Determination of Energy Gain Time Dependent in D+T Mixture with Calculating Total Energy Deposited of Deuteron Beam in Hot Spot

  • S. N. Hoseinimotlagh Pardis Islamic Azdad University of Shiraz
Keywords: Deuteronbeam, fast ignition, gain, dynamics


The fast ignition (FI) mechanism, in which a pellet containing the thermonuclear fuel is first compressed by a nanosecond laser pulse, and then  irradiated by an intense "ignition" beam, initiated by a  high power picosecond laser pulse,  is one of the promising approaches to the realization of the inertial confinement fusion (ICF). If the ignition beam is composed of deuterons, an additional energy is delivered to the target, coming from fusion reactions of the beam-target type, directly initiated by particles from the ignition  beam .In this work, we choose the D+T fuel and  at first step we compute the average reactivity in terms of temperature for first time at second step we use the obtained results of step one and calculate the total deposited energy of deuteron beam inside the target fuel at available physical condition then in  third step we introduced the dynamical balance equation of D+T mixture and solve these nonlinear  differential coupled  equations versus time .In forth step we compute the power density and energy gain under physical optimum conditions and at final step we concluded that  maximum  energy deposited  in the target from D+T and D+D reaction are equal to  to19269.39061 keV and 39198.58043 keV respectively.


Download data is not yet available.

Author Biography

S. N. Hoseinimotlagh, Pardis Islamic Azdad University of Shiraz

Physics Department, Sciences College, Pardis Islamic Azdad University of Shiraz, Pardis, Iran


A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov,Phys. Rev. Lett. 84, 4108 (2000).

A. W. Maschke, Proceedings of the (1975) Particle Accelerator Conference, page 1875,IEEE report NS-22, June (1975)

C. Bathke, H. Towner, and G. H. Miley, Trans. Am. Nucl. Soc. 17,41 (1973).

D. J. Rose and M. Clark, Jr., Plasmas and Controlled Fusion MIT Press, Cambridge, MA(1965).

G. H. Miley, Fusion Energy Conversion American Nuclear Society, Hinsdale, IL(1976).

G. Velarde, Y. Ronen, and J. Martinez-Val. Nuclear fusion by Inertial Confinement: A comprehensive treatise.

H. Schwoerer, S. Pfotenhauer, O. Jackel, K. U. Amthor, Ziegler, R. Sauerbrey, K. W. D. Ledingham, and T. Esirkepov ,Nature London439,445 (2006)

Logan, B. Grant Bangerter, Roger O.Callahan, Debra A.Tabak, Max Roth, Markus Perkins, L. John Caporaso, George ,Lawrence Berkeley National Laboratory (2005).

M Temporal J Honrubia, S Atzeni. Phys. Plas.9,3102(2002)

M. L. Shmatov, J. Br. Interplanet. Soc. 57,362(2004).

M. L. Shmatov, J. Br. Interplanet. Soc. 60,180 (2007).

M. Sherlock et al., Phys. Rev. Lett. 99, 255003 (2007).

M. Tabak, et al., Phys. Plasmas 1, 1626 (1994)

M. Tabak, et. al. Int. HIF Symposium (Heidelberg) paper ( 1997)

N. Naumova, T. Schlegel, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov,and G. Mourou, Phys. Rev. Lett. 102, 025002 (2009).

S. Atzeni et al., Nucl. Fusion 49, 055008 (2009).

S. Atzeni, M. Temporal, and J. Honrubia, Nucl. Fusion 42, L1 (2002).

S. Pfalzner, “An Introduction to Inertial Confnement Fusion”, Published by CRC Press Taylor & Francis Group(2006).

T. C. Magelssen, “Targets Driven by Dual-Energy Heavy Ions”, Nuclear Fusion 24, 1527(1984).

V. Bychenkov, W. Rozmus, A. Maksimchuk, D. Umstadter, and C.Capjack, Plasma Phys. Rep. 27, 1017 (2001).

V. T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J.-L. Feugeas, P.Nicolaï, and X. Ribeyre, Nucl. Fusion 50, 045003 (2010).

Xiaoling Yang, George H. Miley, Kirk A. Flippo, and Heinrich Hora,PHYSICS OF PLASMAS 18, 032703 (2011)

Xing Z. Li, Qing M. Wei and Bin Liu, Nucl. Fusion 48 ,125003 ,5pp (2008).