Open Access Open Access  Restricted Access Subscription or Fee Access

Biosynthesis of Gold Nanoparticle using Cell-free Extract of Clinical Isolates Staphylococcus Aureus and Escherichia Coli

Y. Valentina, Mohd Yousuf Rather, A. Yogamoorthi


Present study reports on biological synthesis of gold nanoparticles using cell free extract of Staphylococcus aureus and Escherichia coli. The cold extract is allowed to react with both 1mM and 10 mM solutions of HAuCl4 which showed a colour change from yellow to dark cherry red after 1 hr. Gold nanoparticle formation is confirmed with UV-Visible spectrophotometer at 547nm.The 10mM concentration is found to be better for synthesis of more NPs using E. coli. XRD pattern exhibited 2? values38.18o, 44.39o, 64.58o, 77.55o of 2? value, corresponding to Braggs diffraction at 111, 200, 220 and 311 plane of lattice structure closely matching with the standard values given in ICDD reference file. SEM analysis revealed morphological characteristics of nanoparticles of different sizes ranging from 70 to 200 nm. Thus, the present study throws new light on the suitability of E. coli as an alternative for conventional methods of chemical synthesis of gold nanoparticles.


Biosynthesis-gold, Nanoparticles-bacterial extract, Staphylococcus Aureus, Escherichia Coli

Full Text:



Ahmad A., Senapati S., Khan M. I., Kumar R., & Sastry M. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilicactinomycete, Thermomonospora sp. Langmuir 19: 35503553.

Arunachalam K. D, & Annamalai S. K. (2013). Chrysopogonzizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications. Int J Nanomedicine, 8(1), 2375-2384.

Arya, V. (2010). Living systems: Ecofriendly nanofactories. Digest Journal of Nanomaterials and Biostructures. 5 (1), 9-11.

Boruah, S. K., Boruah, P. K., Sarma, P., Medhi, C., & Medhi, O. K. (2012). Green synthesis of gold nanoparticles using Camellia sinensis and kinetics of the reaction. Adv. Mat. Lett, 3(6), 481-486.

Cao, Y., Jin, R., &Mirkin, C. A. (2001). DNA-modified core-shell Ag/Au nanoparticles. Journal of the American Chemical Society, 123(32), 7961-7962.

Chrosa, J. H., and Walsh, C. T. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria Microbiol. Mol Biol. Rev 2002, 66, 223.

Dahl, J. A., Maddux, B. L., & Hutchison, J. E. (2007). Toward greener nanosynthesis. Chemical reviews, 107(6), 2228-2269.

Deplanche, K., & Macaskie, L. E. (2008). Biorecovery of gold by Escherichia coli and Desulfovibriodesulfuricans. Biotechnology and bioengineering, 99 (5), 1055-1064.

Du, L., Jiang, H., Liu, X., & Wang, E. (2007).Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5? and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications, 9(5), 1165-1170.

Elia, P., Zach, R., Hazan, S., Kolusheva, S., Porat, Z. E., & Zeiri, Y. (2014). Green synthesis of gold nanoparticles using plant extracts as reducing agents. International journal of nanomedicine, 9, 4007.

Frank, L. H. and DeMoss, R. D. J. 1989 on the biosynthesis of pyocyanine. Bacteriol 1959, 77,776.

Hayward, R. C., Saville, D. A., & Aksay, I. A. (2000). Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature, 404 (6773), 56-59.

He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., & Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonascapsulata. Materials Letters, 61(18), 3984-3987.

He, S., Zhang, Y., Guo, Z., & Gu, N. (2008). Biological synthesis of gold nanowires using extract of Rhodopseudomonascapsulata. Biotechnologyprogress, 24 (2), 476-480.

Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., & Hong, J. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomumcamphora leaf. Nanotechnology, 18(10), 105104.

Husseiny, M. I., El-Aziz, M. A., Badr, Y., & Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67 (3), 1003-1006.

Hutchison, J. E. (2008). Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. Acs Nano, 2(3), 395-402.

Iravani, S. (2014). Bacteria in nanoparticle synthesis: current status and future prospects. International Scholarly Research Notices, 2014.

Ismail, E. H., Khalil, M. M., Al Seif, F. A., & El-Magdoub, F. (2014). Biosynthesis of gold nanoparticles using extract of grape (vitisvinifera) leaves and seeds. Prog Nanotechnol Nanomater, 3, 1-12.

Kalishwaralal, K., Deepak, V., Pandian, S. R. K., & Gurunathan, S. (2009). Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresource technology, 100(21), 5356-5358.

Kashefi, K., Tor, J. M., Nevin, K. P., & Lovley, D. R. (2001).Reductive precipitation of gold by dissimilatory Fe (III)-reducing bacteria andarchaea. Applied and Environmental microbiology, 67(7), 3275-3279.

Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., & Nagamine, S. (2004).Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res SocJpn, 29, 2341-2343.

Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., Kemner, K. M., & Lai, B. (2000). Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 290(5497), 1744-1747.

Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir, 22(6), 2780-2787.

Lengke, M. F., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A., & Southam, G. (2006).Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environmental science & technology, 40(20), 6304-6309.

Mubarak D, Thajuddin N, Jeganathan K, & Gunasekaran M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85(2), 360-365.

Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009).A novel bacterial isolate Stenotrophomon asmaltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8(1), 1.

Pradhan, N., Pal, A., & Pal, T. (2001). Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 17(5), 1800-1802.

Pradhan, N., Pal, A., & Pal, T. (2002). Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 196(2), 247-257.

Rai, M., Yadav, A., Bridge, P., Gade, A., Rai, M., & Bridge, P. D. (2009). Myconanotechnology: a new and emerging science. Applied mycology, 258-267.

Rajasree, S. R., & Suman, T. Y. (2012).Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens.Asian Pacific Journal of Tropical Disease, 2, S796-S799.

Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V 1998. Molecular and biotechnological aspects of microbial proteases .Microbiol. Mol Biol. Rev 62, 59729

Shahverdi A.R, Fakhimi A., Shahverdi H.R, Minaian S. (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed: Nanotechnol. Biol Med, 3 (2); 168171

Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au coreAg shell nanoparticles using Neem (Azadirachtaindica) leaf broth. Journal of colloid and interface science, 275(2), 496-502.

Shiying H, Zhirui G, Zhanga Y, Zhanga S, Wanga J, Ning G: Biosynthesis of gold nanoparticles using the bacterium Rhodopseudomonas capsulate. Mater Lett 2007; 61:39843987.

Singh, C., Baboota, R. K., Naik, P. K., & Singh, H. (2012). Biocompatible synthesis of silver and gold nanoparticles using leaf extract of Dalbergiasissoo. Adv Mater Lett, 3(4), 279-285.

Siripong, P., Kongkathip, B., Preechanukool, K., Picha, P., Tunsuwan, K., & Taylor, W. C. (1992). Cytotoxic diterpenoid constituents from Andrographispaniculata leaves. J. Sci. Soc. Thailand, 18(4), 187-94.

Southam, G., & Beveridge, T. J. (1994).The in vitro formation of placer gold by bacteria. Geochimicae Cosmochimica Acta, 58(20), 4527-4530.

Stephen, J. R., & Macnaughtont, S. J. (1999).Developments in terrestrial bacterial remediation of metals. Current opinion in biotechnology, 10(3), 230-233.

Sujitha, M. V., & Kannan, S. (2013). Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 15-23.

Suman, T. Y., Rajasree, S. R., Kanchana, A., & Elizabeth, S. B. (2013). Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morindacitrifolia root extract. Colloids and surfaces B: Biointerfaces, 106, 74-78.

Suman, T. Y., Rajasree, S. R., Ramkumar, R., Rajthilak, C., & Perumal, P. (2014). The Green synthesis of gold nanoparticles using an aqueous root extract of Morindacitrifolia L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 11-16.

Wen, L., Lin, Z., Gu, P., Zhou, J., Yao, B., Chen, G., & Fu, J. (2009). Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. Journal of Nanoparticle Research, 11(2), 279-288.

Yong, P., Rowson, N. A., Farr, J. P. G., Harris, I. R., & Macaskie, L. E. (2002). Bioreduction and biocrystallization of palladium by Desulfovibriodesulfuricans NCIMB 8307. Biotechnology and Bioengineering, 80 (4), 369-379.

Zheng, J., Nicovich, P. R., & Dickson, R. M. (2007). Highly fluorescent noble metal quantum dots. Annual review of physical chemistry, 58, 409.

-- 0 --


  • There are currently no refbacks.

Copyright (c) 2017 Y. Valentina, Mohd Yousuf Rather, A. Yogamoorthi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.