Influence of Internal Energies on Optical Properties of Methyl Ammonium Lead Triiodide Thin Layers

Authors

  • Cliff Orori Mosiori Department of Mathematics and Physics, School of Applied and Health Sciences, Technical University of Mombasa, P. O. Box 92840, Mombasa, KENYA

DOI:

https://doi.org/10.18034/apjee.v9i1.642

Keywords:

Urbach Tail, Surface Energy Loss Function, Volume Energy Function, Electric Susceptibility, Inter-Band Transition Strength, Methyl Ammonium Lead Halides

Abstract

In this study, various forms of energies affecting optoelectronic properties of CH3NH3PbI3 thin films are presented and explained experimentally and using theoretical models. Different concentrations of CH3NH3PbI3 solution were prepared, and thin films were deposited using spin-coating at a speed of 1000 rpm for 90 seconds and annealed at 100o C for about 60 minutes. Optical measurements were obtained, and the films were analyzed. The results showed that some properties, like absorption coefficients, ranged between 4.68073 - 22.19402×102 cm-1, dielectric constant between 4.10497 - 4.96329, and band gap between 1.6121 – 2.1642 eV. Various energies were determined, including transition energies, obtained as 1.742 eV, VE losses as 1.732 eV, average band gap at 1.723 eV, and SE losses at 1.714 eV. These values of internal energy had a significant direct influence on the optoelectronic properties of CH3NH3PbI3 and thus concluded that they could be used to provide initial helpful information in designing and modeling hybrid perovskite optical devices.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Amgar, D., Aharon, S., &Etgar, L. (2016). Inorganic and Hybrid Organo‐Metal Perovskite Nanostructures: Synthesis, Properties, and Applications. Advanced Functional Materials, 26(47), 8576-8593.

Arun, P., Jelissa, J., Vytenis, P.,Joël, T., and Jacques-E, M. (2015). Dynamics of photocarrier separation in MAPbI3 perovskite multigrain films under a quasistatic electric field. The Journal of Physical Chemistry C, 120, 19595−19602.

Byung-wook, P., Bertrand, P., Sagar, J., Xiaoliang, Z., Tomas, E., Hakan, R., Burkhard. Z. and Gerrit, B. (2015). Chemical engineering of methyl ammonium lead iodide/bromide perovskites: Tuning of optoelectronic properties and photovoltaic performance, Journal of Materials Chemistry A, 3, 21760–21771.

Chun-Sheng, J., Mengjin, Y., Yuanyuan, Z., Bobby, T., Sanjini, U. Joseph, M. Weilie, Z., Joseph J., Jao, L., Nitin,P. Padture, Kai Zhu1 & Mowafak M. Al-Jassim, (2015). Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nature Communications, 6, 8397. https://doi.org/10.1038/ncomms9397

Dalouji, V., Elahi, S., & Ahmadmarvili, A. (2017). Electric susceptibility and energy loss functions of carbon-nickel composite films at different deposition times. Silicon, 9(5), 717-722.

Edoardo M., Thibaud, E. and Filippo, A. (2016). First-principles modeling of organohalide thin films and interfaces, Springer International Publishing, 5, 19-65.

Fan, P., Gu, D., Liang, G. X., Luo, J. T., Chen, J. L., Zheng, Z. H., & Zhang, D. P. (2016). High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Scientific reports, 6, 29910.

Gogoi, P. K., & Schmidt, D. (2016). Temperature-dependent dielectric function of bulk SrTiO3: Urbach tail, band edges, and excitonic effects. Physical Review B, 93(7), 075204.

Gokmen, T., Gunawan, O., Todorov, T. K., & Mitzi, D. B. (2013). Band tailing and efficiency limitation in kesterite solar cells. Applied Physics Letters, 103(10), 103506.

Gonzalez-Pedro, V., Juarez-Perez, E. J., Arsyad, W. S., Barea, E. M., Fabregat-Santiago, F., Mora-Sero, I., & Bisquert, J. (2014). General working principles of CH3NH3PbX3 perovskite solar cells. Nano letters, 14(2), 888-893.

Jun, Y., Daniele, C., Anurag, K. Shi, C., Nripan, M., Andrew, C. Grimsdale, and Cesare, S., (2015). Interfacial charge transfer anisotropy in polycrystalline lead iodide perovskite films, Journal of Physical Chemistry Letters, 6, 1396−1402.

Kholmirzo, T., Sagille, A., Pavel, P., Anatoly V., Alexey R., Tatyana Y., (2015). Molecular dynamics simulations of perovskites: The effect of potential function representation on equilibrium structural properties, Open Journal of Physical Chemistry, 5, 110-121

Kim, J., Lee, S. H., Lee, J. H., & Hong, K. H. (2014). The role of intrinsic defects in methyl ammonium lead iodide perovskites. The journal of physical chemistry letters, 5(8)

Laura M., (2016). Charge-carrier dynamics in organic-inorganic metal halide perovskites, Annual Review of Physical Chemistry, 67, 65–89.

Lee, Y., Kwon, J., Hwang, E., Ra, C. H., Yoo, W. J., Ahn, J. H., ... & Cho, J. H. (2015). High‐performance perovskite graphene hybrid photo detector. Advanced materials, 27(1), 41-46.

Lien, D., Anitha, E., Jo ,V. , Jean, M. , Edoardo, M. ,Filippo A., and Hans-Gerd, B, (2015). Intrinsic thermal instability of methyl ammonium lead trihalide perovskite, Advanced Energy Materials, 5(15), 1500477

Lindblad, R., Jena, N. K., Philippe, B., Oscarsson, J., Bi, D., Lindblad, A., ... & Siegbahn, H. (2015). Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety. The Journal of Physical Chemistry C, 119(4), 1818-1825.

Mariona C., Andrés, G., Elena, M., Osbel, A., Germa, G., Mariano, C., and Juan B., (2015). Polarization switching and light-enhanced piezoelectricity in lead (II) halide perovskites, The Journal of Physical Chemistry Letters, 5, 120-131. https://doi.org/10.1021/acs.jpclett.5b00502

Mattoni, A., Filippetti, A., & Caddeo, C. (2016). Modeling hybrid perovskites by molecular dynamics. Journal of Physics: Condensed Matter, 29(4), 043001.

Men´endez-Proupin, E., Palacios, P., Wahn´on, P. and Conesa, C. (2014). Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite, Physical Review B, 90, 045207

Nadim, M., Mengjin, Y., Zhen, L., Nazifah, I., Xuan, K., and Zhaoyang, F. (2016). Polarization and dielectric study of methyl ammonium lead iodide thin film to reveal its nonferroelectric nature under solar cell operating conditions, American Chemical Society Energy Letters, 1, 142−149.

Nagabhushanaa, G., Radha, S., and Alexandra, N. (2016). Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proceedings of the National Academy of Sciences, 113(28), 7717–7721. https://doi.org/10.1073/pnas.1607850113

Sadhanala, A., Cacovich, S., Divitini, G., Vrućinić, M., Friend, R., Sirringhaus, H., Deschler, F. and Ducati, C. (2015). Nanoscale investigation of organic – inorganic halide perovskites. Journal of Physics: Conference. 644, 012-024. https://doi.org/10.1088/1742-6596/644/1/012024

Simon, A., Jonas, W, James, A., and Lukas, S. (2015). Physical and electrical characteristics of lead halide perovskites for solar cell applications. American Institute of Physics, 2, 040701.

Valerio, A., Mingjian, Y., Riccardo, C., Emmanuel, S., Dong, S., Makhsud, I., Pongsakorn, K., Damir, K., Sjoerd, H., Zheng-Hong, L., Osman, M., and Edward, H. (2016). The In-Gap Electronic State Spectrum of Methyl ammonium Lead Iodide Single-Crystal Perovskites, Advanced Materials, 28, 3406–3410.

Vandewal, K., Benduhn, J., & Nikolis, V. C. (2018). How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustainable Energy & Fuels, 2(3), 538-544.

Wei, D., Ma, F., Wang, R., Dou, S., Cui, P., Huang, H., ... & Elseman, A. M. (2018). Ion‐Migration Inhibition by the Cation –π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 30(31), 1707583.

Yang, B., Brown, C. C., Huang, J., Collins, L., Sang, X., Unocic, R. R., ... & Geohegan, D. B. (2017). Enhancing ion migration in grain boundaries of hybrid organic–inorganic perovskites by chlorine. Advanced Functional Materials, 27(26), 1700749.

Yani, C., Minhong, H., Jiajun, P., Yong, S., and Ziqi, L., (2016). Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Advanced Science, 3, 1500392.

Yuan, Y., Wang, Q., Shao, Y., Lu, H., Li, T., Gruverman, A., & Huang, J. (2016). Electric‐field‐driven reversible conversion between Methyl ammonium lead tri-iodide perovskites and lead iodide at elevated temperatures. Advanced Energy Materials, 6(2), 1501803.

Zhaoning, S., Suneth, C., Adam, B., Brandon, L., Randy, J., and Michael, J., (2015). Impact of processing temperature and composition on the formation of methyl ammonium lead iodide perovskites, Chemistry of Materials, 27, 4612−4619.

--0--

Downloads

Published

2022-06-01

How to Cite

Mosiori, C. O. (2022). Influence of Internal Energies on Optical Properties of Methyl Ammonium Lead Triiodide Thin Layers. Asia Pacific Journal of Energy and Environment, 9(1), 7-18. https://doi.org/10.18034/apjee.v9i1.642