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ABSTRACT 

Let spt (n) denote the total number of appearances of the smallest part in each 
partition of n. In 1988, Garvan gave new combinatorial interpretations of  
Ramanujan’s partition congruences mod 5, 7 and 11 in terms of a crank for 
weighted vector partitions. This paper shows how to generate the generating 
functions for spt(n),  elaborately and also shows how to prove the relation 
among the terms spt (n) and. In 2008, Andrews stated Ramanujan- type 
congruences for the spt- function mod 5, 7 and 13. The new combinatorial  
interpretations of the spt- congruences mod 5 and 7 are given in this article. 
These are in terms of the spt- crank but for a restricted set of vector partitions. 
The proofs depend on relating the spt- crank with the crank of vector 
partitions. 
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INTRODUCTION  

We give some related definitions of spt(n), vector partitions,  nmM s , ,  ntmM s ,, , and 

 xz, . We discuss the generating function for spt (n) and prove the Theorem 1 in terms 

of  nmM s ,  and also establish the relation among the terms spt (n),  nmM s ,  and 

   . In this paper how to prove the Theorems:  45/5 nspt ,  57/7 nspt ,and 

 613/13 nspt  with the help of examples. These Theorems are the combinatorial 

interpretations of Ramanujan’s famous partition congruences mod  5, 7 and 13.  The proofs 
of the Theorems 2, 3 and 4 depend on relating the spt- crank but for a restricted set of 
vector partitions. 
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SOME RELATED DEFINITIONS 

spt(n): spt(n) is the total number of appearances of the smallest parts in all the partitions of 
n, like: 
n                                                                           spt(n) 

1  1                                                                              1 

2  2 , 11                                                                               3  

3 3 , 12  , 111                                                                              5 

4 4 , 13  , 22   , 112  ,  1111                                10 

5 5 , 14  , 23  , 113   , 122  , 1112   , 11111            14 

…  …    … 
Vector partitions[Garvan (2013)]: 
Let, P denotes the set of partitions and D denotes the set of partitions into distinct parts. 

The set of vector partitions V is defined by the Cartesian product, PPDV  . 

     For a partition , denote  S  as the smallest part in the partition with   S  for 

the empty partition. We denote the following subset of vector partitions,  

           3,2min1  and  11:3,2,1  SSSSVS 


. 

For S


 we define the weight 1  by       1#

1
11








, the crank

     32 ##  


 and 321  


, where 
j  is the sum of the parts of j . 

  nmM s ,  :  The number of vector partitions of n in S with crank m counted according to 

the weight 
 
is denoted by 

                          nmM s , , so that    
nS

S nmM










,

, . 

    ntmM s ,,  :  The number of vector partitions of n in S with crank congruent to m 

modulo t counted according to 

                            the weight   is denoted by  ntmM s ,, , so that; 

                               

   





k

SS nmktMntmM ,,,  

   tmcrank
nS

mod
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GENERATING FUNCTION [GARVAN (1986)] 
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Corollary 1: For 1n ,       
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Proof: If z = 1 from above we get;  
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Equating the coefficient of 
nx we get; 

     





m

S

nS

nmMnspt ,
, 





 

i.e.,       


 


m nS

S nmMnspt







,

, . 

Theorem 2:  
 

5

45
45,5,




nspt
nk

s
M ,  for 40  k . 

Proof: We prove Theorem 2 with an example. There is a table of the 16 vector partitions 

S


 with 4


 
as follows:  

Table-1 

Vector partitions of 4 Weight  


 Crank  


 

  ,,41 


 +1 0 

  ,,132 


 –1 0 

  ,3,13 


 +1 1 

 3,,14  


 +1 –1 

  ,2,25 


 +1 1 

 2,,26  


 +1 –1 

  ,1,127 


 –1 1 

 1,,128  


 –1 –1 

  ,21,19 


 +1 2 

 21,,110  


 +1 –2 

 2,1,111 


 +1 0 

 1,2,112 


 +1 0 

  ,111,113 


 +1 3 

 111,,114  


 +1 –3 

 1,11,115 


 +1 1 

 11,1,116 


 +1 –1 
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From the table we get, 

         1211214.5,0 


SM  =1–1+1+1= 2. 

Similarly,         4,5,34,5,24,5,14,5,0 SSSS MMMM

 
 

5

4
24,5,4

spt
M S  . 

Hence,  
 

5

45
45,5,




nspt
nkM S , for 40  k . Hence, the Theorem. 

We can find the following relations from above table: 

 4,5,0SM  =+1–1+1+1=2, 

 4,5,1SM  =+1+1–1+1=2, 

 4.5,2SM  =  4,5,3SM =+1+1=2, 

 4,5,3SM  =  4,5,2SM =+1+1=2, 

 4.5,4SM  =  4,5,1SM =+1+1–1+1=2. 

So that we can see that,   0, nmM S  for all m and n.  

   nmMnmM SS ,,   and     ntmtMntmM SS ,,,,  . 

Theorem 3:  
 

7

57
57,7,




nspt
nkM S ,  for  60  k . 

Proof: We prove the Theorem 3 with an example. There is a table of the 32 vector 

partitions S


 with 5


 
as follows: 

Table-2 

Vector partitions of 5 Weight  


 Crank  


 

  ,,51 


 +1 0 

  ,4,12 


 +1 1 

 4,,13  


 +1 –1 

  ,3,24 


 +1 1 

 3,,25  


 +1 –1 

  ,13,16 


 +1 2 

 13,,17  


 +1 –2 

 1,3,18 


 +1 0 

 3,1,19 


 +1 0 

 2,2,110 


 +1 0 

  ,22,111 


 +1 2 
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 22,,112  


 +1 –2 

  ,211,113 


 +1 3 

 211,,114  


 +1 –3 

 2,11,115 


 +1 1 

 11,2,116 


 +1 –1 

 1,21,117 


 
+1 1 

 21,1,118 


 
+1 –1 

  ,1111,119 


 
+1 3 

 1111,,120  


 
+1 –3 

 11,11,121 


 
+1 0 

 1,111,122 


 
+1 2 

 111,1,123 


 
+1 –2 

  ,1,3124 


 
–1 +1 

 1,,3125  


 
–1 –1 

  ,,4126 


 
–1 0 

  ,,3227 


 
–1 0 

  ,2,1228 


 
–1 1 

 2,,1229  


 
–1 –1 

 1,1,1230 


 
–1 0 

  ,11,1231 


 
–1 2 

 11,,1232  


 
–1 –2 

 

From the above table we get, 

  5,7,0SM +1+1+1+1+1–1–1–1=2 

 5,7,1SM +1+1–1–1+1+1=2 

 5,7,2SM +1+1+1–1=2 

 5,7,3SM   5,7,4SM +1+1=2 

 5,7,4SM   5,7,3SM +1+1=2 

 5,7,5SM   5,7,2SM +1+1+1–1=2 

  5,7,6SM   5,7,1SM +1+1–1–1+1+1=2 

So that,   5,7,0SM  5,7,1SM  5,7,2SM  5,7,3SM  



ABC Journal of Advanced Research, Volume 3, No 2/2014                                                                                                ISSN 2304-2621(p);  2312-203X (e)                                                      

CC-BY-NC 2014, i-Proclaim | ABCJAR                                                                                                                                              Page 121 

 

 5,7,4SM  5,7,5SM   5,7,6SM 2=
 

7

5spt
. 

Hence,  
 

7

57
57,7,




nspt
nkM S , for 60  k . Hence, the Theorem. 

Theorem 4:    13 mod0613 nspt . 

Proof: We prove the Theorem 4 with an example. There is a table of the 64 vector 

partitions S


 with 6


 
as follows: 

      Table-3 

Vector partitions of 6 Weight 

 


 

Crank 

 


 

  ,,61 


 +1 0 

  ,,512 


 –1 0 

  ,5,13 


 +1 +1 

 5,,14  


 +1 –1 

  ,,425 


 –1 0 

 4,,26  


 +1 –1 

  ,4,27 


 +1 1 

  ,41,18 


 +1 2 

 41,,19  


 +1 –2 

 4,1,110 


 +1 0 

 1,4,111 


 +1 0 

  ,1,4112 


 –1 +1 

 1,,4113  


 –1 –1 

  ,3,314 


 +1 1 

 3,2,115 


 +1 –1 

 3,2,116 


 +1 0 

 2,3,117 


 
+1 0 

  ,32,118 


 
+1 2 

 32,,119  


 
+1 –2 

 3,,2120  


 
–1 –1 

  ,3,2121 


 
–1 1 

 2,,3122  


 
–1 –1 
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  ,2,3123 


 
–1 1 

 1,31,124 


 
+1 1 

 31,1,125 


 
+1 –1 

  ,11,3126 


 
–1 2 

 11,,3127  


 
–1 –2 

 1,1,3128 


 
–1 0 

 2,2,229 


 
+1 0 

  ,22,230 


 
+1 2 

 22,,231  


 
+1 –2 

 1,2,2132 


 
–1 0 

 2,1,2133 


 
–1 0 

  ,21,2134 


 
–1 2 

 21,,2135  


 
–1 –2 

 111,11,136 


 
+1 –1 

 11,111,137 


 
+1 1 

 1,1111,138 


 
+1 3 

 1111,1,139 


 
+1 –3 

  ,11111,140 


 
+1 5 

 11111,,141  


 
+1 –5 

 2,111,142 


 
+1 2 

  ,2111,143 


 
+1 4 

 2111,,144  


 
+1 –4 

 111,2,145 


 
+1 –2 

 21,11,146 


 
+1 0 

 11,21,147 


 
+1 0 

 211,1,148 


 
+1 –2 

 1,211,149 


 
+1 2 

  ,111,2150 


 
–1 3 

 111,,2151  


 
–1 –3 

 1,11,2152 


 
–1 1 

 11,1,2153 


 
–1 –1 
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  ,221,154 


 
+1 3 

 221,,155  


 
+1 –3 

 2,21,156 


 
+1 1 

 21,2,157 


 
+1 –1 

 1,22,158 


 
+1 1 

 22,1,159 


 
+1 –1 

  ,311,160 


 
+1 3 

 311,,161  


 
+1 –3 

 3,11,162 


 
+1 1 

 11,3,163 


 
+1 –1 

  ,,32164 


 
+1 0 

 

From the table we get;  6,13,0SM = +1–1–1+1+1+1+1–1+1–1–1+1+1+1 = 4, 

 6,13,1SM = +1+1–1+1–1–1+1+1–1+1+1+1 = 4, 

 6,13,2SM = +1+1–1+1–1+1+1 = 3, 

 6,13,3SM = +1–1+1+1 = 2, 

 6,13,4SM = +1= 1, 

 6,13,5SM = +1= 1, 

 6,13,6SM = 0, 

 6,13,7SM = 0, 

 6,13,8SM =  6,13,5SM = +1 = 1, 

 6,13,9SM =  6,13,4SM = +1 = 1, 

 6,13,10SM =  6,13,3SM = +1–1+1+1 = 2, 

 6,13,11SM =  6,13,2SM = +1+1–1+1–1+1+1 = 3, 

 6,13,12SM =  6,13,1SM = +1+1–1+1–1–1+1+1 –1+1+1+1= 4. 

   






12

0
6,13,

5

5
6,13,

m
m

s
M

m
m

s
M   613 nspt = 26, where n = 0. 

i.e.,    13mod0613 nspt . Hence the Theorem.   
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CONCLUSION  

In this study we have discussed the set of vector partitions and have discussed the 
generating function for spt (n) and also have established the generating function for 

 nmM s , . We have shown a relation among the terms spt (n),  nmM s , , and    and 

have satisfied the Theorems 2, 3, and 4 with the help of examples.  
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