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ABSTRACT 

The Durbin-Watson (DW) test is the most widely used test for autocorrelation 
of a first order in regression analysis. The critical value of DW test depends on 
X matrix. As a result, the DW test statistic falls sometime in the inconclusive 
region. For large sample, the DW test can be used for normal distribution. In 
this paper, we proposed a bootstrap critical value for small sample and 
compared the power properties with other procedures. Monte-Carlo study 
shows that the bootstrapped DW test performs better than the usual DW test 
with the help of power.  
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INTRODUCTION  

In time series or econometric analysis, our aim is to forecast or predict future behavior of 
variables. It is to estimate the unknown parameters of the model for making the predictions of 
the natures of variables. But the estimates of the parameters may be inefficient if the error term 
of the model does not follow certain assumptions. The assumption of the model may not 
justify in all cases. Usually, autocorrelation problem arises in time series data. If we used in 
usual testing procedure despite autocorrelation whatever conclusion may be mislead. Thus, it 
is necessary to detect the existence of autocorrelation in a given series at the initial stage. 

The Durbin-Watson (DW) test is the most widely used test for autocorrelation in 
regression model. But, this test has certain limitations, such as: 

 Critical value depends on X-matrix, which leads to “indeterminate range”. 

 Only applicable for first order autocorrelation, 

 Not suitable for dynamic model. 

Durbin-Watson (DW) test is not applicable for small samples. In a case of small sample, 
DW test cannot be applied and in such a situation bootstrap procedure may be a solution 
to this problem. In this paper, we propose a bootstrapped DW-type test and compare the 
power properties by Monte-Carlo simulation. 

http://creativecommons.org/licenses/by-nc/4.0/
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The plan of this paper is as follows: In next section, discuss the model and hypothesis for 
testing first order autocorrelation. Third section discusses the techniques of bootstrapped 
DW statistic. In the section four, discuss the Monte-Carlo simulation study. Simulation 
study is carried out in section five. 

MATERIALS AND METHODS: MODEL AND HYPOTHESIS 

The model 

Let us, consider the following regression model 𝑌 = 𝛽𝑋 + 𝑢                      (1)  

Where, Y and u are  𝑛 × 1 , 𝑋 is (n×k), β  is (𝑘 × 1)  and n denotes the number of 
observations. The disturbance vector, u is normally distributed with 

𝐸 𝑢 = 0 and E(𝑢𝑢′) = Ω,  Ω  is positive definite. We assume that the disturbance term 
follows a stationary AR(1) process of the form  

                                                            𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜖𝑡 , where, 𝜖𝑡~𝑁𝐼𝐷(0, 𝜎2)             (2) 

Hypothesis 

In order to test the autocorrelation in linear regression model as defined in (1) with 
disturbance term u, which follows an AR (1) process of the form (2), the hypothesis are as 
follows:  

𝐻0: 𝜌 = 0 against  𝐻𝑎 : 𝜌 > 0 

BOOTSTRAP DW (BDW) TESTS FOR AUTOCORRELATION 

Many research work have been conducted considering bootstrapped based solution of the 
problem of autocorrelation. (Jeong and Chung (2001), MacKinon, G. J. (2005)). Davidson 
and Mackinnon (2002) applied a recursive bootstrap procedure to test of autocorrelation in 
the presence of lagged dependent variables. Their simulation results show that the 
bootstrap would be a useful tool for autocorrelation tests. The empirical sizes of bootstrap 
tests are acceptable, if not perfect. The power of a „parametric‟ bootstrap test is closed to 
the nearest one except in some abnormal cases with a small number of observations. 
(Abrahamse, A. P. J. and Koerts (1969)). 

In this study suggest a bootstrap test for autocorrelation, is called „Bootstrapped DW( 
BDW) test‟. Firstly, BDW test uses the critical values from the empirical bootstrap 
distribution and eliminates the indeterminate range of the DW test. Elimination of the 
inconclusive range expected to improve the power of the DW test. Secondly, the BDW test 
is robust to distributional assumptions. The (𝑑𝐿 , 𝑑𝑈) adjustment as well as the other 
approximated test procedures based on the normality assumption. Bootstrap utilizes the 
information embedded in a given finite sample; bootstrapping is expected to provide 
better finite sample properties then the asymptotic testing procedure. 

It‟s  not a  question how much accurate the bootstrap  DW statistics. One decide how to 
resample the data, how to construct the empirical distribution, whether to construct the 
empirical distribution under the null hypothesis or under the alternative hypothesis (i.e. at a 
given sample), etc. We apply the following recursive bootstrap procedure to the DW statistic. 

i. Estimate 𝛽  of equation (1) by OLS and compute 𝑢 . 
ii. Estimate 𝜌  of equation (2) by OLS and compute𝜀 . 
iii. Resample 𝜀  to construct a bootstrap residual vector𝜀∗. 
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iv. Recursively construct a bootstrap residual vector 𝑢∗ by equation (2). At this stage, to 
impose the null hypothesis𝐻0: 𝜌 = 0. As a result, 𝑢∗ becomes identical to 𝜀∗. 

v. Using X and 𝑢∗ create the „fake‟ data by 𝑦∗ by equation (1). 
vi. Using X and 𝑦∗ we recomputed the DW statistic𝑑∗. 
vii. Repeat step (ІІІ)-(VІ)  to construct the empirical distribution of𝑑∗. 
viii. We reject the null hypothesis when 𝑑 > 𝑑𝑗

∗. The bootstrap critical value 𝑐𝛼
∗  is the 

(1 − 𝛼) quintile of the 𝑑𝑗
∗. This is simply a number (1 − 𝛼)*B in the list of 𝑑𝑗

∗, sorted 

from smallest to largest. 

MONTE-CARLO SIMULATION 

To verify the finite sample performance of the bootstrap tests suggested in this paper, 
perform a Monte-Carlo study. We consider the three alternative tests for autocorrelation in 
the regression model: the original DW test, the BDW test and the Asymptotically DW 
(ADW) test. (see, for example, Gujarati (2003, pp471-472)). 

The regression model (1) along with the first order error structure (2) is used in the 
simulation study. We consider a hypothesis of the form  𝐻0: 𝜌 = 0 against  𝐻𝑎 : 𝜌 > 0. In 

Monte-Carlo simulation, all ‟s are set to 1, and the X‟s are created by random picks from 

an uniform distribution over the range 0 to 1. The white noise error 𝜖𝑡  is a standard 
normal. The degree of autocorrelation is controlled by changing the value of  𝜌. In this 
study   considered   10 different values of 𝜌: 0.0 ,0.1,…..0.9 and seven different sample 
sizes; 10,15, 20,30,50, 100, and 200. The number of bootstrap replication is set to 200, and 
the number of simulation is 1000. The normal size of the tests is set to 0.05. 

RESULTS AND DISCUSSION  

Table 1 and 2 present the Monte-Carlo study and the visual inspection of the results are 
shown in figure 1and 2. Table 1 and table 2 represent size and power of the three different 
types of DW test discussed in this paper for n=15 and n=20. Figure 1-2 present the power 
of three tests of result included in table 1-2. The vertical axis of the figures measures the 
power of three tests, and the horizontal axis represents the value of 𝜌.  

From the results, it is observed several important implications. First, the original DW test has 
unacceptable small sample properties. The power of the DW test is not satisfactory when (n-k) 
is small. For example, when n=20 and k=10, the power of DW is 0.204, when n=10, and k=3, 
the power is 0.185 and when n=15, k=10, the power is as low as 0.075 even for  𝜌 = 0.9.  

But the BDW test shows better finite sample properties then DW test. For example, when 
n=20, and k=10, the power of BDW is 1.0, when n=10, and k=3, the power is 0.994 and 
when n=15, and k=10, the power is 0.813 for 𝜌 = 0.9. These powers are always higher than 
the power of the DW and ADW.  

It is evident from the tables and all figures that the power of BDW test is always higher 
than the usual DW test including Asymptotic DW test for different values of n and 𝜌 
considered in this study. 

CONCLUSIONS 

In this paper, a bootstrap Durbin Watson test has been proposed. Monte-Carlo study 
indicates that the bootstrap test show higher power than the existing DW and ADW tests 
for small sample. 



Akter: Bootstrapped Durbin– Watson Test of Autocorrelation for Small Samples                                                                                                      (137-142) 

Page 140                                                                                                                                                        Volume 3, No 2/2014 | ABCJAR 

 

REFERENCES 

Abrahamse, A. P. J and Koerts (1969). A comparison between the power of the Durbin Watson test 
and the power of the BLUS test, Journal of Statistical Association, 64,938-948. 

Basak, T., Rois, R., and Majumder, A. K. (2003) One sided version of the Brush-Godfrey test for 
testing Higher –order Autocorrelation-A distance based approach, Role of the Statistician in 
Achieving the Millennium Development Goals, conference papers, Bangladesh Statistical 
Association. 

Canjels, E. (2002). A Permutation Version of the Durbin-Watson Test for Serial Correlation, Working 
Paper, New School University, New York. 

Draper, N. R., and Smith, H. (1966). Applied Regression Analysis, John Wiley and Sons, New York. 

Durbin, J., and  Watson, G. S. (1971). Testing for serial correlation in least squares regression, 
Econometrics, 58, 1-19. 

Gujarati,  D. N. (2003). Basic Econometrics, 4th edition, McGraw Hill, New York. 

Leong, J. and Chung, S. (2001). Bootstrap test for autocorrelation, Computational Statistics and Data 
Analysis, 38 (1), 49-69. 

MacKinon, G. J. (2002). Bootstrap inference in econometrics, Canadian Journal of  615-645. 

MacKinon, G. J. (2005). Bootstrap methods in econometrics, working paper, Department of Economics, 
Queen‟s University, Canada. 

Majumder, A. K. (1999). One sided and partially one sided hypothesis testing in econometrics, An 
unpublished thesis, Monash University, Australia. 

Shively, T. S., Ansley, C. F. and Kohn, R. (1990). Fast evaluation of the distribution of the Durbin-
Watson and other invariant test statistics in time series regression, Journal of American 
Statistical Association, 85, 676-685. 

 

  



ABC Journal of Advanced Research, Volume 3, No 2/2014                                                                                                ISSN 2304-2621(p);  2312-203X (e)                                                      

CC-BY-NC 2014, i-Proclaim | ABCJAR                                                                                                                                              Page 141 

 

APPENDIX A 

TABLE1: SIZE AND POWER OF THE ORIGINAL DW, BDW AND ASYMPTOTIC DW 
TESTS WHEN n=15, α=.05, ρ>0 

k Test Size                                                  Power 

 ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 DW 0.049 0.063 0.079 0.101 0.169 0.201 0.318 0.418 0.504 0.611 
3 BDW 0.049 0.074 0.181 0.362 0.568 0.789 0.903 0.960 0.983 0.994 
 ADW 0.05 0.074 0.127 0.186 0.259 0.309 0.416 0.553 0.629 0.723 

 DW 0.049 0.045 0.067 0.071 0.087 0.113 0.158 0.203 0.231 0.255 

5 BDW 0.049 0.058 0.099 0.180 0.294 0.430 0.565 0.661 0.730 0.810 

 ADW 0.05 0.063 0.104 0.122 0.153 0.185 0.252 0.303 0.326 0.366 

 DW 0.049 0.041 0.050 0.066 0.072 0.067 0.055 0.084 0.072 0.075 

10 BDW 0.049 0.208 0.522 0.809 0.937 0.981 0.992 0.996 0.996 0.982 

 ADW 0.05 0.056 0.078 0.092 0.105 0.102 0.106 0.117 0.108 0.106 

 
TABLE2: SIZE AND POWER OF THE ORIGINAL DW, BDW AND ASYMPTOTIC DW 
TESTS WHEN n=20, α=.05, ρ>0 

k Test Size                                                  Power 

 ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 DW 0.049 0.067 0.098 0.156 0.260 0.372 0.526 0.669 0.786 0.872 
3 BDW 0.049 0.125 0.354 0.646 0.864 0.964 0.992 0.998 0.999 0.999 
 ADW 0.05 0.084 0.152 0.266 0.341 0.485 0.615 0.735 0.838 0.914 

 DW 0.049 0.049 0.079 0.126 0.171 0.255 0.343 0.464 0.540 0.648 

5 BDW 0.049 0.104 0.250 0.498 0.717 0.868 0.955 0.968 0.992 0.998 

 ADW 0.05 0.071 0.132 0.212 0.270 0.367 0.450 0.572 0.667 0.775 

 DW 0.049 0.058 0.065 0.074 0.077 0.104 0.115 0.153 0.157 0.204 

10 BDW 0.049 0.487 0.689 0.802 0.899 0.942 0.978 1 1 1 

 ADW 0.05 0.063 0.080 0.110 0.120 0.153 0.183 0.226 0.262 0.291 
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APPENDIX B 

 
Figure 1: Illustration of the power curve of DW,  and ADW test when n=15, k=3, with the 
proposed Bootstrapped based Durbin-Watson (BDW) test. 

 

 
Figure 2: Illustration of the power curve of DW,  and ADW test when n=15, k=3, with the proposed 
Bootstrapped based Durbin-Watson (BDW) test. 
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