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ABSTRACT 

The concept of a manifold is central to many parts of geometry and modern 
mathematical physics because it allows more complicated structures to be 
described and understood in terms of the relatively well-understood 
properties of Euclidean space. A manifold is roughly a continuous topological 
space which is locally similar to Euclidean space but which need not be 
Euclidean globally. Fibre bundle is a very interesting manifold and is formed 
by combining a manifold M with all its tangent spaces. A fibre bundle is a 
manifold that looks locally like a product of two manifolds, but is not 
necessarily a product globally. In this study some definitions are given to make 
the study easier to the common readers. An attempt has taken here to discuss 
elementary ideas of manifolds and fibre bundles in an easier way. 
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INTRODUCTION  

In the 20th century the discussion of physical concepts is sometimes based on the 
properties of gauge theories, topology and differential geometry (differentiable manifolds 
and fibre bundles). Differential geometry discusses curves, surfaces, length, volume, and 
curvature using the methods of calculus. In physics, the manifold may be the space-time 
continuum and the bundles and connections are related to various physical fields. 
Differential geometry is used in Einstein‟s general theory of relativity. According to this 
theory, the universe is a smooth manifold equipped with a pseudo-Riemannian metric, 
which describes the curvature of space-time. Differential geometry is also used in the 
study of gravitational focusing and black holes. Differential geometry has applications to 
both Lagrangian mechanics and Hamiltonian mechanics. 

The term “manifold” comes from German Mannigfaltigkeit, by Bernhard Riemann. In 
English, “manifold” refers to spaces with a differentiable or topological structure. 
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A manifold is roughly a continuous topological space which is locally similar to Euclidean 
space but which need not be Euclidean globally. A differentiable manifold M is said to be 
smooth if it is infinitely differentiable. Lines and circles are 1-dimensional manifolds; 
surfaces are 2-dimensional manifolds, plane and sphere are 3-dimensional manifolds and 
Lorentzian space-time manifolds in general relativity are 4-dimentional.  

In Euclidean geometry all points of 
nR can be covered by one coordinate frame 

 nxx ,...,1

 
and all frames with such a property are related to each other by general a 

linear transformation, that is, by the elements of the general linear group  RnGL , as (Frè 

2013): 




 xax  , where  RnGLa ,
 . 

The space-time manifold is the flat affine manifold 
4R  both in Galileo transformations and 

Lorentz transformations with Galilei or Lorentz subgroups of  RGL ,4 . But a different 

situation arises when the space-time manifold is non-flat. In such a situation we cannot express 
all points of a curved surface in a single coordinate frame, i.e., in a single chart. We can 
introduce this curved surface by a collection of charts, called atlas, each of which maps one 
open region of the surface such that the union of all these regions covers the entire surface. The 
concept of an atlas of open charts, suitably reformulated in mathematical terms, provides the 
definition of a differentiable manifold, for more complicated non-flat situations. 

SOME RELATED DEFINITIONS 

In this section we provide some definitions following Hawking and Ellis (1973), Joshi 
(1996) and Mohajan (2013b), which are fully related to the discussion of this study. 

Open Set 

Any point p contained in a set S can be surrounded by an open sphere or ball rpx  , 

all of whose points lie entirely in S, where 0r ; usually it is denoted by; 

    rxpdxrpS  ,: , . 

Closed Set 

A subset S of a topological space M is a closed set iff its complement 
cS is an open set. 

Topological Space 

Let M be a non-empty set. A class T of subsets of M is a topology on M if T satisfies the 
following three axioms (Lipschutz 1965): 

1. M and   belong to T, 

2. the union of any number of open sets in T belongs to T, and 

3. the intersection of any two sets in T belongs to T. 

The members of T are open sets and the space (M, T) is called topological space. 
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Limit Points 

Let M be a topological space. A point Mp
 
is a limit point of a subset S of M iff every 

open set O containing p contains a point of S different from p i.e.,  

    SpOOp .  

Closure of Set 

Let S be subset of a topological space M, then the closure of S is the intersection of all 

closed supersets of S and is denoted by S . 

Interior, Exterior and Boundary 

Let S be subset of a topological space M. A point Sp  is an interior point of S if

SOp  , where O is an open set. The set of interior points of S is denoted by int(S) 

and is called the interior of S. 

The exterior of S is the interior of complement of S, i.e., ext(S) = int(
cS ).  

The boundary of S is the set of all points which do not belong to the interior or the exterior 

of S and is denoted by S , hence   SSS  int . 

Neighborhoods 

Let p be a point in a topological space M. A subset N of M is a neighborhood of p iff N is a 

superset of an open set O containing p, i.e., NOp  . 

DIFFERENTIAL MANIFOLD   

A locally Euclidean space is a topological space M such that each point has a 

neighborhood homeomorphic to an open subset of the Euclidean space 
nR . A manifold is 

essentially a space which is locally similar to Euclidean space in that it can be covered by 
coordinate patches but which need not be Euclidean globally. A real scalar function on a 

differentiable manifold M is a map, RMF :  that assigns a real number  pf  to 

every point Mp  of the manifold. Map OO :  where 
nRO   and 

mRO   is 

said to be a class  0rC r
 if the following conditions are satisfied. If we choose a point p 

of coordinates  nxx ,...,1
 on O and its image  p  of coordinates   nxx  ,...,1

 
on O  

then by 
rC  map we mean that the function   is r-times differential and continuous. If a 

map is 
rC for all 0r  then we denote it by 

C ; also by 
0C map we mean that the map 

is continuous. This means that we can compare a manifold as smooth space (Hawking and 

Ellis 1973). Hence by identifying an open subset of a manifold with an open subset of 
nR , 

the notion of differentiability of a function from 
nR  to 

mR  is passed on to one of a 
function from one manifold to another. 
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A differentiable manifold is roughly a smooth topological space, which locally looks like 
nR . An n-dimensional, 

rC , real differentiable manifold M is defined as follows 

(Mohajan 2013a): 

A topological space M has a 
rC altas   , U  where U  are subsets of M and   are 

one-one maps of the corresponding U  to open sets in 
nR  (i.e.,  is a homeomorphism 

from U to an open subset of 
nR ) such that (figure 1);  

i. U  cover M , i.e., 


UM  . 

ii. If  UU  then the map      UUUU  :1  is a 
rC

 

map of an open subset of 
nR  to an open subset of 

nR . 
 
Condition (ii) is very important for overlapping of two local coordinate neighborhoods. 

Now suppose U  and U  overlap and there is a point p in  UU  . Now choose a 

point q in   U  and a point r in   U . Now   pr 1

 , 

     qrp    1

   . Let coordinates of q be  nxx ,...,1

 
and those of r be 

 nyy ,...,1
. At this stage we obtain a coordinate transformation; 

 nxxyy ,...,111   

 

  
 nxxyy ,...,122   

 
   …    …     … 

 

 nnn xxyy ,...,1 . 

 

 

Figure 1: The smooth maps 
1

    on the n-dimensional Euclidean space 
nR giving the 

change of coordinates in the overlap region. 
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Given a local chart   ,U  one can define physical quantities on U  much like one 

would do on 
nR , where the   define coordinates on U . The different patches U can 

however be glued together in a non-trivial way by the transition functions 
1

    , so 

that globally a manifold is a generalization of 
nR . 

The open sets U , U  and maps 
1

    and 
1

    are all n-dimensional, so that 
rC

 
manifold M is r-times differentiable and continuous i.e., M is a differentiable manifold. So that, 
whenever we will say manifold, we will mean differentiable manifold. General relativity is 
founded on the concept of differentiable manifolds. The mathematical model of space-time is 

given by a pair  gM , where M is a differentiable manifold of dimension 4 and g is a metric 

that is a rule to calculate the length of curves connecting points of M. 

Here we will discuss some definitions related to differential geometry following Mohajan 
(2013b) and Joshi (1996). 

Hausdorff Space 

A topological space M is a Hausdorff space if for pair of distinct points  Mqp ,  there 

are disjoint open sets U  and U  in M such that Up  and Uq .    

Paracompact Space 

An atlas   , U  is called locally finite if there is an open set containing every Mp  

which intersects only a finite number of the sets U . A manifold M is called a 

paracompact if for every atlas there is locally finite atlas   ,O  with each O  

contained in some U . Let 
V  be a timelike vector, then paracompactness of manifold M 

implies that there is a smooth positive definite Riemann metric K  defined on M.        

Homeomorphism 

Two topological spaces 1M  and 2M  are called homeomophic if there exists a one-one 

onto function 21: MMf   such that f and 
1f  are 

0C  continuous. The function f is 

called a homeomorphism. If f and 
1f  are both 

rC  map then f is called 
rC

diffeomorphism. Homeomorphisms preserve all topological properties.  

Tangent Space 

A 
kC -curve in M is a map from an interval of R in to M (figure 2). A vector  

 0tt 
  

which is tangent to a 
1C -curve  t  at a point  0t  is an operator from the space of all 

smooth functions on M into R and is denoted by; 
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 
 
 

 

     
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tfstf
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t
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f
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





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





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



0

0
0

, 

where f be a function from M into R. If  ix   are local coordinates in a neighborhood of 

 0tp   then;  

 
   0

0

.

t

i

i

t x

f

dt

dx
t

f

 














. 

A vector X at the point p tangent to the curve is called a tangent vector to M at p. If   ix
 

are a set of coordinates on U , X can be represented by the components, 

  
0


t

tx
dt

d
X 

. We define a tangent vector by the relation; 

 

    
0


t

tf
d

d
fX 

 

 

 
Figure 2: A curve in a differential manifold. 

where X is represented by a differential operator, 



x
XX




 . Hence the set 












x

 

can be considered as a basis and every tangent vector at Mp  can be expressed as a 

linear combination of the coordinates derivates,    
p

n
p xx 




 ,...,1 . Thus the vectors 

 ix
  span the vector space 

pT . Then the vector space structure is defined by 

     YfbXfafbYaX  , where Rba ,  and pointwise multiplication is defined 

by       XgXfXgf . . The vector space 
pT is also called the tangent space at the 

point p, i.e., the collection of the vectors at p tangent to all curves that go through p is 

called the tangent space MTp
at p. Hence the tangent space MTp

to the manifold M in 

the point p is the vector space of first order differential operators on the smooth functions 
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 MC
 at p. A smooth assignment of a tangent vector at every point Mp  is called a 

vector field  pX  on M. 

Orientation 

In mathematics, orientability is a property of surfaces in Euclidean space measuring 
whether it is possible to make a consistent choice of surface normal vector at every point. 

Let B be the set of all ordered basis  ie  for 
pT , the tangent space at point p. If  ie  and 

 je  are in B, then we have i

i

jj eae   . If we denote the matrix  ija  then   0det a . 

An n-dimensional manifold M is called orientable if M admits an atlas  iiU ,  such that 

whenever  ji UU
 
then the Jacibian, 0det 














j

i

x

x
J , where  ix  and  jx 

 

are local coordinates in iU  and jU  respectively. The M o bious strip is a non-orientable 

manifold (discuss later). A vector defined at a point in M o bious strip with a positive 

orientation comes back with a reversed orientation in negative direction when it traverses 
along the strip to come back to the same point. 

Orientation of a Manifold 

An orientation of a manifold is a choice of a maximal atlas, such that the coordinate 
changes are orientation preserving. An oriented atlas is called maximal if it cannot be 
enlarged to an oriented atlas by adding another chart. A topological manifold M is called 
orientable if it has a topological orientation, otherwise it is called non-orientable. For zero 

dimensional manifolds an orientation is a map  1: M  (Kreck 2013). 

An atlas  nRUUU    :,  is called oriented if all coordinate changes 

     UUUU  :1  are orientation preserving. A 

homeomorphism MNf :  between oriented topological manifolds is orientation 

preserving if for each chart  
nRVU :  in the oriented atlas of N the chart f is in 

the oriented atlas of M. 

A real vector bundle, which a priori has a  nGL  structure group, is called orientable 

when the structure group may be reduced to  nGL  
, the group of matrices with positive 

determinant. For the tangent bundle, this reduction is always possible if the underlying 
base manifold is orientable and in fact this provides a convenient way to define the 
orientability of a smooth real manifold.  

Space-time Manifold 

In general relativity each point is an event so that coordinates specify not only it is where 
but also it is when. General relativity models the physical universe as a four-dimensional 

C  Hausdorff differentiable space-time manifold M of 4-dimentional with a Lorentzian 

metric g of signature (–,+,+,+) which is topologically connected, paracompact and space-
time orientable. These properties are suitable when we consider for local physics. As soon 
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as we investigate global features then we face various pathological difficulties such as, the 
violation of time orientation, possible non-Hausdorff or non-papacompactness, 
disconnected components of space-time etc. Such pathologies are to be ruled out by means 
of reasonable topological assumptions only. However, we like to ensure that the space-
time is causally well-behaved. We will consider the space-time manifold (M, g) which has 
no boundary. By the word “boundary‟ we mean the „edge‟ of the universe which is not 
detected by any astronomical observations. It is common to have manifolds without 

boundary; for example, for two-spheres S2 in 
3R  no point in S2 is a boundary point in the 

induced topology on the same implied by the natural topology on 
3R . All the 

neighborhoods of any 
2Sp  will be contained within S2 in this induced topology. We 

shall assume M to be connected i.e., one cannot have YXM  , where X and Y are 

two open sets such that YX . This is because disconnected components of the 

universe cannot interact by means of any signal and the observations are confined to the 
connected component wherein the observer is situated. It is not known if M is simply 
connected or multiply connected. M assumed to be Hausdorff, which ensures the 
uniqueness of limits of convergent sequences and incorporates our intuitive notion of 
distinct space-time events. 

One-form 

One-form is defined as linear, real valued function of vectors. We define a general basis by 

 ie  for i = 1,2,..,n  which are linearly independent vectors. Then any vector pTV   we 

can write, 

i

ieVV   

where the quantities 
iV  are called the components of V with respect to the basis ie . In the 

coordinate basis we have 
dt

dx
V

i
i  . Also we know 











ix

 forms a basis of pT  at p, we 

can define the vector space of all the dual vectors at p is called covariant vectors or one-

forms at p. A one-form   at p is a real-valued linear function of pT  and is denoted by 

    XXX ,  , where the last expression emphasizes the equal status of   and 

X. Here  X  is often called the contraction of   with X. In tensor algebra vectors are 

called contravariant vectors and one-forms are called covariant vectors. The linearity of 
one-form means (Hawking and Ellis 1973, Joshi 1996);  

YbXabYaX ,,,    

for Rba ,  and pTYX , . Multiplication of a one-form by a real number a implies; 

XaXa  ,,  . 

Again for all X,   is the one-form such that; 

XXX ,,,   . 
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The linear combinations of one-forms are defined by; 

XbXaXba ,,,    

for all X. We observe that one-forms at the point p satisfy the axioms of vector space, 

which is called the dual vector of pT  and is denoted by 
*

pT . Given a tangent space basis 

 ie , a unique set of one-forms  ie
 
is defined by the condition that the given one-form 

je  maps a vector V into 
jV . Hence, 

jj VVe ,  and  
i

jj

i ee , . 

We can write the one-form   as; 

i

ie   i.e., ii e,  . 

For any 
*

pT  and pTV   we can write,  

j

ji

i eVeV ,,  
i

j

j

iV  i

iV . 

Any smooth function f on M defines a one-form df, is called the differential of f as;  

VfVdf , . 

Hence in a coordinate basis we have, 

i

i

x

f
VVdf




, . 

The local coordinate functions  nxx ,...,1
  can be used to define a set of one-forms 

 ndxdx ,...,1
 , which gives a basis dual to the coordinate basis. Now we can write; 

i

jj

i

j

i

x

x

x
dx 









, , which gives, 

a

a
dx

x
dfdf  ,






a

a
dx

x

f




 . 

If f is non-constant function then the surface f = constant, define an (n–1)-dimensional sub-

manifold M. For the set of all the vectors pTV  , such that, 0, VfVdf , then the 

vectors V are tangent to curves in the f = constant sub-manifold through p. In such a 
situation df is normal to the surface f = constant at p. 

We can write an arbitrary tangent vector as; 

i
i

i

xd

dx

d

d







. 

So that the gradient df is defined by,  
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 d

df

d

d
df 








. 

Hence we can write; 






































 d

d
b

d

d
af

d

df
b

d

df
af

d

d
b

d

d
a

d

d
b

d

d
adf .  

Hypersurface 

In the Minkowski space-time 
22222 dzdydxdtds  , the surface t = 0 is a 3-

dimensional surface with the time direction always normal to it. Any other surface t = 

constant is also a spacelike surface in this sense. Let S be an  1n -dimensional 

manifold. If there exists a 
C  map MS :

 
which is locally one-one i.e., if there is a 

neighborhood N for every Sp  such that   restricted to N is one-one, and 
1  is a 

C as defined on  N , then   S  is called an embedded sub-manifold of M. A 

hypersurface S of any n-dimensional manifold M is defined as an  1n -dimensional 

embedded sub-manifold of M. Let 
pV  be the  1n -dimensional subspace of 

pT  of the 

vectors tangent to S at any Sp  from which follows that there exists a unique vector 

p

a Tn   and is orthogonal to all the vectors in 
pV . 

an  is called the normal to S at p.  If 

the magnitude of  
an  is either positive or negative at all points of S without changing the 

sign, then 
an  could be normalized so that 1ba

ab nng . If 1ba

ab nng  then the 

normal vector is timelike everywhere and S is called a spacelike hypersurface. If the 
normal is spacelike everywhere on S with a positive magnitude, S is called a timelike 

hypersurface. Finally, S is null hypersurface if the normal 
an  is null at S. 

Lie Algebra 

The set of the infinitesimal generators  X  is a linear algebra on the field K where 

the group transformations are defined and the Lie product of two operators is simply their 
commutator (Gourdin 1982). 

     ZYZXZYX ,,,    

     ZXYXZYX ,,,    

K  ,  and ZYX ,, . 

A Lie Algebra is a linear algebra which satisfies the anti-symmetry property;  

   XXX ,0, . 

The fundamental relation of Lie Algebra is the following: 

  



 XCXX ,  
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where the quantities 


C  are called the structure constant of the Lie Algebra. 

The Jacobian identity is, 

         0 ,, ,, ,,  YXZXZYZYX . 

For infinitesimal generators this gives the relation for the structure constants. The general 

linear group  RnGL ,  is defined as the set of regular linear transformations of 
nR . An 

evident complete basis of nn  matrices is obtained with matrices having only one non-

vanishing element. Let us choose for convenience,   nsmrmnrs ggE   and we have 
2n  

such matrices. The matrices rsE  are a matrix representation of the Lie algebra of 

 RnGL ,  and the commutation relations have the explicit form; 

  tsurruatturs EgEgEE , . 

FIBRE BUNDLE 

Fibre bundle is absolutely central in modern physics which provides the appropriate 
mathematical framework to formulate modern field theory. There are two kinds of fibre-
bundles: principal bundles and associated bundles. The notion of a principal fibre-bundle is 
the appropriate mathematical concept underlying the formulation of gauge theories. Gauge 
theories describe the dynamics of all non-gravitational interactions (interactions of photon, 
gluon, graviton etc. bosons). The associated fibre-bundles provide mathematical framework 
to describe matter fields that interact through the exchange of the gauge bosons. 

Basic Concepts of Fibre Bundle 

Fibre bundle is a very interesting manifold and is formed by combining a manifold M with all 

its tangent spaces 
pT . A fibre bundle is a manifold that looks locally like a product of two 

manifolds, but is not necessarily a product globally. A bundle whose fibre is a one-dimensional 
vector space is called a line bundle. A fibre bundle will be called trivial if it can be described as 
a global product. Because of the importance of fibre bundles in modern theoretical physics, 
many introductory expositions of fibre bundles for physicists exist. For simplicity let us 
consider a one-dimensional manifold M (a curve) and its tangent spaces. Figure 3a shows a 
curve M and a few tangent spaces which are straight lines drawn tangent to the curve, and 
each must be thought of as extending infinitely far in both directions. When we draw tangents 
in such a process the picture of course will be messy due to large number of tangent spaces 
intersecting one another and leaving the curve M haphazardly. So, we look for a better way 
like figure 3b where the tangent spaces are drawn parallel, they cross M only at the point  

 
Figure 3a: A one–dimensional manifold and some of its tangent spaces. 
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where they are defined. Here 
pT represents not tangent to the curve but vector at each p. 

So, we define new manifold TM, consisting of all vectors at all points, which is two-

dimensional. It is called a fibre bundle where the fibres are the spaces 
pT for each p. A 

general fibre bundle consists of a base manifold, which is the curve M and one fibre 
attached to each point of the base space. If the base space is n-dimensional and each fibre 
is m-dimensional then the bundle has 

 
Figure 3b: Same as figure 3a but here tangent spaces are drawn parallel to one another to 
avoid spurious intersections. 

 nm  -dimensions.
 
The points of a single fibre are related to one another while points 

on different fibres are not. This is formalized by defining a projection map  , which maps 

any point of a fibre to the base manifold defined on it (Schutz 1980). Hence a fibre bundle 
is a manifold M with a copy of the fibre F at every point of M. 

Now we shall study the global properties of the fibre bundles. For simplicity we consider 

the product space. Two spaces M and N have Cartesian product space NM   consisting 

of all ordered pairs (a,b) where Ma  and Nb . If M and N are manifolds, NM   is 

also a manifold. The set of coordinates   ,...,1, mixi   of an open set U of M taken 

together with open set V of N, from a set of nm  coordinates for the open set  VU ,  of 

NM  . The fibre bundles defined above, at least locally, product spaces, the product 

 FU   of open set U of the base manifold B with the space F representing a typical fibre. 

It is locally trivial but globally it is not trivial. The above property is defined as follows 
(Schutz 1980): 

Let us consider 
1TS , the tangent bundle of the circle 

1S . 
1TS is identical to the product 

space RS 1
, as shown in figure 4a which is global version of the local picture as shown 

in figure 3b. 

 
Figure 4a: The trivial way of constructing TS1 as the product space of the circle S1 and the 
typical fibre R1. 
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If we cut the circle at point y and unwrap the bundle, laying it as figure 4b.  

 
Figure 4b: TS1 cut along one fibre and laid flat. Each fibre is extended infinitely far in the 
vertical direction. 
 

The M o bius Strip 

To form a M o bius strip we consider a rectangular strip. It is of course be seen as the 

product of two line segments. If we want to join two opposite edges of the strip to turn one 
of the line segments into a circle, there are two ways to do this. To reconstruct figure 4a 

from figure 4b we simply identify point x with x , y with y  and z with z , and so on. 

Joining of the two edges in a straightforward way we can form a cylinder C (Figure 5). It 
should be of course clear that the cylinder is not only locally a product, but also globally; 

namely LSC  1
, where L is a line segment which is not only locally a product but also 

globally. The cylinder is a global diffeomorphism from LS 1
 to C (Nash and Sen1983, 

Nakahara 1990). 
 

 
 
 
 
 
 
 
 

 

Figure 5: The cylinder version of the fibre bundle. 
 

But in a different way we can form a M o bius band as follows: Identify x with z , y with 

y  and z with x , and so on. This is a twist so that it looks like figure 6 when joined 

together. Locally it is still the same as figure 4a. In fact the bundle over any connected 

open proper subset of 
1S   

 
 

 
 
 
 
 
 
 

Figure 6: M o bius band version of the fibre bundle. 
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has one-one continuous map into the same portion of figure 4a. Locally, along each open 

subset U of the 
1S , the M o bius strip, Mo still looks like a product, LUM o  . 

However, globally there is no unambiguous and continuous way to write a point m of Mo 

as a Cartesian pair   LSts  1, . Locally, 
1: SM o  , hence for every 

1Sx , its 

inverse image is isomorphic to the line segment,   Lx 1 . For every open subset U of 

1S , we can define a diffeomorphism  ULU 1:   , i.e., for every element p of 

  oMU 1 , we can assign local coordinates    txp ,1  , where    Upx 

and Lt . 

M o bius strip covers the circle by two open sets, 1U  and 2U , which overlap on two 

disjoint open intervals, A and B  (Collinucci and Wijns 2006). Here we have the two maps 
(Figure 7); 

 1

1

11 : ULU    

 2

1

22 : ULU    
 

Here 21 UU   covers Mo and 1  and 2  are homeomorphisms 12h  which define an atlas 

for Mo from L to L in such a way that     thxtx 122

1

1 ,,   . So, M o bius band is not a 

product space globally that is, of a non-trivial fibre bundle. 
 

 

Figure 7: M o bius band is not a product space globally. 
 

The difference between above two bundles over 
1S  is in what is called the bundles 

„structure group‟. We define a fibre bundle as a space E for which the following are given 

a base manifold B, a projection BE : , a typical fibre F, a structure group G of 

homeomorphism of F into itself, and a family  jU  of open sets covering B, all of which 

satisfies the following restrictions: 

The bundle over any set iU , which is  iU1 , has a homeomorphism onto the product space 

FU i  i.e., locally the bundle is trivial. Part of this homeomorphism is a homeomorphism from 

each fibre, say  x1  where x is an element of B, onto F. Let us call this map  xhi . 
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When two sets iU  and 
jU  overlap, a given point x in their intersection has two 

homeomorphism  xhi  and  xh j
 from its fibre onto F. Since a homeomorphism is 

invertible, the map    xhxh
ji

1  is a homeomorphism of F onto F which is necessary to 

be an element of the structure group G. 
 

 

Figure 8: A set of neighborhoods of 
1S  which cover 

1S . The extent of each neighborhood 

is indicated by the parentheses, 1U overlaps 2U , and so on until 8U
 
overlaps 1U . 

 
The second restriction is global structure of the fibre bundle. To check this, we first introduce the 

complete definition of 
1TS . The bundle 

1TSE   has base 
1SB  , typical fibre 

1RF  ,  and 

projection   xvx ,:  where x is a point of 
1S and v is a vector in xT . Let the covering 

 iU  be the open sets of any atlas of 
1S , (figure 8).  Every iU  has a coordinate system i.e., a 

parametrization of 
1S , which we will call i  . The vector idd    at x in iU

 
is a basis for xT , 

so, any vector v in xT  has representation   ii dd    for any index i, and   Ri  . 

The homeomorphism of xT  onto R which are part of the definition of 
1TS  are defined to 

be    ii vxh : . If x belongs to two neighborhoods iU  and 
jU

 
there are two such 

homeomorphisms from xT  on to R, and since i    and 
j  are unaltered,  i   and  i  

can be any two real numbers. The homeomorphism     FFxhxh
ji  :1

   maps 

   ji    and is therefore just multiplication by the number    jiijr  . Since 
ijr  

is any real number other than zero, the structure group is  01 R , which is a Lie Group. 

For an n-dimensional manifold M the structure group of TM is the set of all nn  matrices 

with non-zero determinant, which is called GL (n, R) which defines 
1TS . 

To characterize the structure of the M o bius band we must use different maps  xhi . Let us use 

the family  8,...,2,1 , iU i  and also define 1,...,1,1 782312  rrr . But in this case the 
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twist in the M o bius band faces us to use 181 r . The structure group here is a multiplicative 

group with elements  1,1  . The tangent bundle 
1TS  has the structure group is  01 R , 

which is nearly the same as its typical fibre. The frame bundle of any manifold M has the same 
structure group as TM, but its fibre is the set of all bases for the tangent space. 

In the case of a one-dimensional manifold like 
1S , this is the set of all non-zero vectors, which is 

identical to  01 R . So, the fibre bundle of has fibres homeomorphic to its structure group, and 

this is true for all frame bundles. Such a group is called a principal fibre bundle (Schutz 1980).        

Corollary: The M o bious band is a non-orientable manifold. 

Proof: The center circle in a M o bious band, oM is an orientable sub-manifold, but it does 

not admit a continuous vector field which is nowhere tangent to it. Hence the oM  cannot 

be orientable. 

Definition of a Fibre Bundle 

A differentiable fibre bundle  GFME ,,,,  consists of the following elements 

(Collinucci and Wijns 2006): 
i) A differentiable manifold E is called the total space. 
ii) A differentiable manifold M is called the base space. 
iii) A differentiable manifold F is called the typical fibre. 

iv) A surjection ME :  is called the projection map which is smooth. For Mx , 

the inverse image   FFx x 1   is called the fibre at x. 

v) A (Lie) Group G is called the structure group, which acts on the fibre on the left and it is 
called principal bundle. A principal bundle can be thought of the parent of various 
associated bundles, which are constructed by allowing the Lie group to act on a fibre. 

vi) An open covering  iU  of M and a set of diffeomorphisms   iii UFU 1:    

such that   xtxi , . The map i  is called a local trivialization. 

vii) At each point Mx ,    txt ixi ,,    is a diffeomorphism, xxi FF :, . On 

each overlap  ji UU , we require  FFh xjxiij   :,

1

,   to be an element of 

G, i.e., we have a smooth map  GUUh jiij  :  such that     txhxtx ijij  ,,   . 

Mathematically this defines a coordinate bundle. From (vi) it follows that  iU1  is 

diffeomorphic to a product, the diffeomorphism is given by   FUU iii  11 : . It 

is in this sense that E is locally a product. We usually require that all fibres be 

diffeomorphic to some fixed manifold F. A bundle that is a product FME  , is said 
to be trivial (Frankel 1999). 

Principal Bundles and Associated Vector Bundles 

The collection of all tangent vectors to a manifold M at a point p is a vector space called the 

tangent space MTp . The collection  MxMTp    of all tangent spaces of M is called the 

tangent bundle TM. Its base manifold is M and fibre is 
nR , where n is the dimension of M, and 



ABC Journal of Advanced Research, Volume 4, No 1 (2015)                                                                                              ISSN 2304-2621(p);  2312-203X (e)                                                      

CC-BY-NC 2014, i-Proclaim | ABCJAR                                                                                                                                               Page 73 

 

its structure group is a subgroup of   RnGL , . If M is 
nR , the tangent space to every point is 

isomorphic to M itself. Its tangent bundle 
nTR  is trivial and equal to 

nnn RRR 2 . The 

circle is not contractible, yet its tangent bundle 
1TS  is trivial. The tangent bundle of the 2-

sphere 
2TS  is a nontrivial bundle. There is no global diffeomorphism between 

2TS  and 
22 RS  , since in this case one cannot even find a single global non-vanishing vector field  

and one would have to be able to define two linearly independent vectors at every point of the 
sphere in a smooth fashion. A set of pointwise linearly independent vectors over an open set of 

the base manifold of a tangent bundle is called a frame 
2FS . We have seen that 

2TS  is non-

trivial globally, because we cannot able to find a frame over the entire sphere. At each point of 
frame we can of course construct many different sets of linearly independent vectors. The set of 

all possible frames over an open set U of 
2S  is diffeomorphic to  RGLU ,2 . Globally this 

becomes a bundle over 
2S with fibre  RGL ,2  and is called the frame bundle 

2FS  of 
2S

(Collinucci and Wijns 2006). An associated vector bundle is a fibre-bundle where the standard 
fibre F = V is a vector space and the action of the structural group on the standard fibre is a 

linear representation of G on V. A tangent bundle is always a vector bundle. The M o bius strip 

is not a vector bundle. A principal bundle has a fibre which is identical to the structure group 
G. It is usually denoted by P(M, G) and called a G-bundle over M. 

CONCLUDING REMARKS 

In this study we have discussed preliminary ideas of differential manifold and fibre 
bundles. We have discussed some definitions to make the paper interesting to the readers. 
Throughout the study we have avoided difficult mathematical calculations. The paper will 
be helpful for those readers who need very elementary idea of differential geometry.  
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