
ABC Journal of Advanced Research, Volume 9, No 2 (2020) ISSN 2304-2621(p); 2312-203X (e)

CC-BY-NC 2014, i-Proclaim | ABCJAR Page 115

Blender and Unreal Engine Character Design

and Behavior Programming for 3D Games

Sreekanth Dekkati

Assistant Vice President (System Administrator), MUFG Bank, New York, USA

Corresponding Contact:

Email: sreekanthd041987@gmail.com

Manuscript Received: 10 Nov 2020 - Revised: 18 Dec 2020 - Accepted: 25 Dec 2020

ABSTRACT

A software game is a program used for entertainment and severe purposes that
can be applied to many fields such as education, business, and health care. These
more severe uses can apply to a variety of domains. The software game
development technique is distinct from traditional software development due to
the multidisciplinary nature of the game development methods, which include
elements such as sound, art, control systems, artificial intelligence (AI), and
human factors. The fundamental software engineering principles allow game
creation to achieve maintainability, flexibility, reduced time and expense, and
improved design. This study's objectives are to (1) evaluate the current level of
research on the process of game development software engineering and (2) draw
attention to aspects of this process that require additional investigation by
researchers. In the research, we utilized a methodology that consisted of a
comprehensive literature evaluation based on widely recognized digital libraries.
The production phase of the game development software engineering process
life cycle has been the focus of most research published on the topic. The pre-
production phase has followed this. In comparison, the amount of research
focused on the post-production phase is far lower than that of the pre-
production and production stages. According to this research, developing video
games through software engineering has many facets that require more attention
from researchers; this is especially true regarding the post-production phase.

Keywords: Digital Games, Model, Game Development, Unreal Engine, Blender

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and

although the new works must also acknowledge & be non-commercial.

INTRODUCTION

Technology has taken over our everyday lives to the point that we are surrounded by it no
matter where we go. We can find gadgets embedded with software in most of them. These
devices can execute various jobs quickly and be created to cater to our wants and
requirements so that we can get the most benefit out of them (Aleem et al., 2016).

mailto:sreekanthd041987@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Dekkati: Blender and Unreal Engine Character Design and Behavior Programming for 3D Games (115-126)

Page 116 Volume 9, No 2/2020 | ABCJAR

Suppose one focuses on the industry of digital games. In that case, they will discover that
it has benefited from this, and according to the Entertainment Software Association (ESA),
an organization founded by numerous game creators, the industry made a profit of
twenty-three and a half billion dollars (Thaduri et al., 2016). In addition, according to the
ESA, on average, 1.7 gamers live in each home in the United States. However, even though
the business appears to be doing well, there needs to be more development rules and
models that hinder the production of games. Because of this challenge, a different strategy
was required.

Software can be defined as any collection of instructions that enables us to interact with
technology. Since digital games are software, this definition includes software. In this
instance, the software emphasizing enjoyment is a digital game (Thaduri, 2017). Because of
this, one could believe that utilizing a software development model is sufficient to design
a game successfully; moreover, digital games are not a result of pure engineering; they
cannot be developed using a systematic and stringent engineering process. However,
digital games are not considered works of pure art either; instead, they result from
interweaving multiple disciplines, including art, music, programming, acting, and the
management or integration of all these elements (Lal et al., 2018). Because of this, creating
a video game calls for a very particular and precise development procedure. Despite this,
software development models continue to serve as a valuable resource of principles,
concepts, and processes, yet they still need to be improved regarding the particulars of
game development.

In addition, the production and development of video games as a means of enhancing the
quality of life for people with disabilities is not a novel concept; however, it is a "noble"
concept that has, up until this point, counted on some efforts that followed an ad hoc
approach rather than a systematic approach that was guided by a well-recognized and
well-documented process for creation and production (Lal & Ballamudi, 2017). The Social
Tech Booster, found online at http://stb.uninova.pt, is one example of an initiative
producing distinct "serious" games and systems towards this purpose. The initiative
brings together educational institutions and students in their final year of study in
engineering. Through completing their master's thesis, the students are allowed to make a
positive difference in the lives of several other people. At the same time, the institutions
receive more resources suited to their requirements, ultimately altering the lives of those
in the greatest need (Best, 2013).

The issue mentioned before is that there needs to be a development model that can
successfully design and develop a game for this purpose. In addition, the process by
which the STB initiative is carried out creates further barriers to progress because of the
constraints imposed by both parties involved (Thaduri, 2018). A problem that needs to be
solved is the knowledge gap between the two parties, which is caused by factors such as
the lack of time that the students have to develop the game (they have only nine months to
do it), the lack of resources that the institutions can provide, and so on. Using the STB
initiative as a starting point, this article proposes a game development model capable of
effectively delivering a high-quality game (Ballamudi, 2016).

PROGRAMMING CHARACTER BEHAVIOR

Molding a character's behavior in a game is complicated and requires various tools.
Instead of depending on Unreal's physics engine, the game's primary characters use root

ABC Journal of Advanced Research, Volume 9, No 2 (2020) ISSN 2304-2621(p); 2312-203X (e)

CC-BY-NC 2014, i-Proclaim | ABCJAR Page 117

motion technology (Lal, 2015). This method enables the animations to control the
movement of the character's root bone. Animators now have greater control and precision
over the character's movement and interactions with the environment. Using keyframe
animation in Blender to produce the gameplay animations and then merging everything in
the AnimGraph, a technology that enables us to create complicated animation logic for our
characters using nodes and graphs, is how the animations are created. Because we can
bundle many states into a single alias and then use it as a condition for transitions or
blends in Unreal Engine 5, it is straightforward to keep everything organized. This is made
possible by the State Aliases feature, one of the many features that make it possible. We
can simplify our AnimGraph and keep from repeating the same logic for each of the
different states if we do it this way (Chen et al., 2012).

We also use Masks, additive animations, and cached poses to add further depth on top of
everything else. Masks are a type of node that enables us to apply different animations or
effects to some skeleton regions while isolating those parts from the rest (Ballamudi &
Desamsetti, 2017). If we want the upper body to move in another animation from the
lower body, we can use a mask. Additive animations are layered on top of another
animation, so altering the pose is achieved at the end. Using an additive animation, for
instance, we could add tilting to the flying or the running and varied positions while the
character is aiming when they are shooting (Thaduri, 2019).

There are nodes in the AnimGraph known as cached poses. These nodes allow us to save a
posture at a specific location in the graph and reuse it later. For instance, we can use a
cached pose as a transitional tool to transition between two different positions seamlessly.
Using root motion in a multiplayer game is not a good idea since it can cause
synchronization issues and latency problems. Using root motion in a single-player game is
not a problem. However, when used in a game with only one player, it can offer quite a
few more layers of realism and allow animators to "direct" and control the movement of a
figure (Desamsetti & Mandapuram, 2017). Now, non-playable characters are different.
Blueprints are used instead of behavior trees in creating the game's primary adversaries,
for example. Blueprints are incredibly versatile and powerful tools that may be used to
design anything from straightforward triggers to intricate artificial intelligence systems
(Ma, 2013).

However, what about the crowd NPCs, the people we see doing business in the various
cities? They take a hint from Unreal's Matrix Demo and the plug-in Mass AI system, which
is a tool that enables us to create large-scale crowds of autonomous agents that can
navigate complex settings. They take a cue from Unreal's Matrix Demo and the plug-in
Mass AI system. Because of this structure, the non-playable characters (NPCs) navigate the
city by following these predetermined paths while deftly avoiding impediments, such as
the main character or other NPCs (Lal, 2016). We are letting them make their own
decisions.

We combine Mass AI with our own NPC randomization blueprint, which is a mechanism
that enables us to generate a wide variety of NPCs with their personalities. Booleans and
data tables are used to pick various values for each NPC, such as gender, race, haircut,
dress, accessories, etc. This allows the system to function correctly. After that, the values
are used in the creation script to alter the NPC's appearance and qualities. For instance, we
can decide the gender of the NPC by using a boolean, then use a data table to choose a
random name, hairdo, and outfit for that gender, and finally update the textures and

Dekkati: Blender and Unreal Engine Character Design and Behavior Programming for 3D Games (115-126)

Page 118 Volume 9, No 2/2020 | ABCJAR

parameters in the materials. Because of this, rather than having to design each NPC
manually, we may generate hundreds or even thousands of unique NPCs.

This approach is a massive assist in populating the game's cities because it enables us to
construct realistic and diverse crowds of NPCs, giving the environment a more vibrant
and immersive feel overall. We can also utilize this method to design NPCs that fit the
theme and atmosphere of each city, such as futuristic, cyberpunk, steampunk, or any of
the other themes above. An illustration of this system can be seen in this location.
Remember that the system still needs to be done and that the final product will have
additional age possibilities, outfit selections, and materials.

We also decided to combine behavior trees and root motion to simulate the movement of
animals and other unique NPCs that are free to explore the open world. A behavior tree is
a graphical representation of the decision-making process that an artificial intelligence
agent goes through. They are made out of nodes that can represent various things,
including actions, conditions, sequences, selectors, and decorators. By mixing behavior
trees with root motion, we can provide animals and NPCs with realistic movements and
dynamic behaviors. This allows us to develop more complex characters. Ultimately, every
character is unique, and to make them behave precisely how we want, we will need to use
the appropriate tools from the toolbox provided by Unreal.

COMBINING BLENDER AND UNREAL ENGINE

Blender is often where we do all our modeling for environments, except for minor items.
This means the level design is created entirely within the Blender program. Since we have
already coded the character's movement, it is much easier for us to make it directly in a
modeling application, which is a technique that might only be encouraged if we are
intimately familiar with the character's movement. However, doing so is much simpler
(Turner et al., 2016).

As we previously stated, the initial layout and the building were created by us in Blender.
After that, everything is imported into Unreal in distinct parts, and after that, we begin the
process of scene dressing with smaller items such as lighting, benches, trees, and other
elements along the same lines. When it comes to the appearance of characters and other
props in Unreal, we find it helpful to have a visual reference of what they will look like. To
see textures and other features, we use our shaders in Blender. This gives us much creative
freedom. The shaders in Blender and Unreal are essentially the same thing from a
technical point of view.

Importing animations is the component that poses the least amount of difficulty. If an
animation does not function as intended, reimporting it into Unreal is as simple as
conducting a drag-and-drop operation on our computer. This is typically a procedure that
we carry out several times. In addition, Unreal has a set of tools for modifying animations,
such as changing their pace or adjusting the curves in facial mocap. Therefore, Unreal is
always open to making a few tweaks here and there (Dekkati & Thaduri, 2017). However,
since Unreal has streamlined the import procedure, the shortest option is reimporting it
from Blender. However, it is essential to remember that the programs use different units of
measurement and even axis orientations, so it is necessary to be aware of these differences.
As a result, we will need to configure the scene in Blender and the export and import
settings so that everything runs smoothly. Once that step has been completed, switching
from Unreal to Blender is a relatively simple process.

ABC Journal of Advanced Research, Volume 9, No 2 (2020) ISSN 2304-2621(p); 2312-203X (e)

CC-BY-NC 2014, i-Proclaim | ABCJAR Page 119

We also collect motion capture data for our work using Rokoko Studio (with the Smartsuit
and Smartgloves) and the Live Link Live application, specifically designed for facial
mocap. In addition to it, we make use of other applications, such as Substance 3D Painter.
Because of this, we are accustomed to switching between software regularly and
developing a smooth and efficient routine.

SETTING UP THE SCANNING EFFECT

The scanning effect is a function that, when activated, will allow us to view more
information about the planet and the characters in the game, providing details and hints
that were previously hidden. However, putting it into practice is pretty simple, with the
most challenging component being the visual aspect of it (Chen et al., 2019). Configuring a
flip-flop node in the blueprints is necessary to produce the scanning effect. A flip-flop
node is called if it switches between its two different outputs every time it receives an
input. In this scenario, the input consists of the button turning on the scanning mode. The
first output causes the activation of a post-processing shader. This shader applies an effect
to the final displayed image by utilizing a timeline, a node that allows us to animate a
value using curves. This is followed by triggering a boolean variable named Scan, which
can only take on one of two values: true or false (Yoon & Kim, 2015).

The scanning effect relies heavily on the post-processing shader to do its work. It produces
a mask that spreads outward from the camera's location to "the end" of the world,
covering everything that comes into contact with it. The mask can alter the look of the
items behind it, including adding a grid, an impulse, a chromatic aberration, or even
outlines on the buildings. Controlling the visibility of specific objects in the world, such as
additional user interface, character information, mission cues, and so on, is another use of
the mask (Dekkati et al., 2019). These components are only revealed whenever the mask is
positioned to cover them; otherwise, they remain concealed in the background. This
results in a scanning effect that is both dynamic and participatory.

Scan is the name of the boolean that is used to keep track of whether or not the scanning
mode is currently active. It controls the visibility of specific items worldwide, such as
additional user interfaces, character information, mission hints, etc. When set to true, it
enables the post-processing shader and allows the extra elements. They are rendered
inoperable once that property is set to a false value. Additionally, the boolean is used to
connect with other blueprints or scripts that may require information regarding the status
of the scanning mode, such as whether it is active or not. If we push the input button
again, the flip-flop node's second output will deactivate the post-processing effect through
another timeline. It will also turn off the Scan boolean, returning everything to its initial,
standard state.

We are going to talk about the "city generation" here. It is similar in concept but more
complicated since it also involves the integration of level streaming, which is a technique
that enables us to load and unload parts of a significant level dynamically, depending on
the location and direction of the player in the level. It is similar but significantly more
complicated.

OPTIMIZATION

Our absolute favorite aspect is optimization, and we employ various tools to ensure
everything goes well. On a laptop outfitted with a GTX 1060 GPU, 8GB of RAM, and an i7

Dekkati: Blender and Unreal Engine Character Design and Behavior Programming for 3D Games (115-126)

Page 120 Volume 9, No 2/2020 | ABCJAR

processor, the game plays flawlessly with all settings set to Ultra at 1080p, getting 30-50
frames per second (FPS). When we consider this, it is clear that optimization is one of the
most important things for us to focus on (Aleem et al., 2016).

To begin, the game does not use Lumen, VSM, or Nanite, even though these are fantastic
tools that make the work of developers much more accessible. When these tools are used,
however, it is possible that the game will not function as intended on systems with a
middle-range to lower-end hardware configuration or even on consoles from an earlier
generation. As a result, we first turned off these options (although the appropriateness of
this move dramatically depends on the nature of our project and our goals).

Instancing and Level of Detail (LOD) are used extensively throughout the game's cities
and world. Instancing is a technology that allows numerous copies of the same mesh to be
rendered with only one draw call. This brings the CPU overhead down, which ultimately
results in improved performance. LODs, which stands for Levels of Detail, are simplified
representations of a mesh presented at various distances from the camera. These mesh
versions are rendered in different ways depending on the distance. This lowers the stress
on the GPU, which in turn increases performance. On the other hand, collision detection is
maintained as straightforward as practically practicable because complicated collisions
can result in substantial problems (Liang & Feng, 2012).

The master material for buildings is another method that can be utilized. The buildings in
the game have a great deal of intricacy and typically contain between 12 and 16 different
materials within each structure. This could result in issues with the draw call. A draw call
is a command that tells the GPU to render a geometry batch with a specified set of state
changes (Dekkati et al., 2016). A draw call is also requested to keep this explanation as
straightforward as possible (Ballamudi, 2019a). As a result, making excessive draw calls
might slow the rendering process and impact performance. To address this issue, a new
material was developed that combines all of the existing textures and materials into a
single material, essentially including a Material Atlas function into the material itself (the
work of PrismaticaDev served as inspiration for the development of this material). A
material atlas is a texture comprising numerous sub-textures, each of which may be
accessed using various UV coordinates (Ballamudi, 2019b). This is a more technical
explanation of what a material atlas is. If our scenes have many different materials, we
should use this strategy. Our GPU will be grateful.

The rotation of items is the subject of yet another entertaining trick. Certain cities feature
hundreds of things that rotate at the same time. The traditional method for accomplishing
this goal uses animations and skeletal meshes, even though they can affect performance;
alternatively, it uses rotating components or tick events, even though both of these
concepts struggle when dealing with hundreds of spinning objects. To solve this problem,
we devised a shader that gives the impression that the object is rotating even though it
does not move in that manner. A visual technique analogous to the movement of plants in
response to the character or the wind.

CHALLENGES IN GAME DEVELOPMENT

Only 16% of projects are finished on time and under budget, as indicated by the findings
of a recent data gathering conducted by Pretillo. In addition, it is reasonable to deduce
from the data collected that the difficulties that occurred more frequently (over fifty

ABC Journal of Advanced Research, Volume 9, No 2 (2020) ISSN 2304-2621(p); 2312-203X (e)

CC-BY-NC 2014, i-Proclaim | ABCJAR Page 121

percent) resulted from ineffective project management and inadequate requirement
collection (Desamsetti, 2016a).

The production of video games is fraught with difficulties, and the failure rate is high;
nonetheless, many of these issues have been addressed and resolved by the computer
software industry. To find solutions to problems, it is necessary first to recognize and
comprehend the challenges at hand, as is the case with most situations. The most
significant competitors are as follows:

 Diverse Resources Video games are the product of the collaboration of a large
number of specialists in a variety of fields. As the project progresses, managing all
of these is an increasing challenge.

 Diverse Resources Video games are the product of the collaboration of a large
number of specialists in a variety of fields. As the project progresses, managing all
of these is an increasing challenge.

 Scope: Because there was not enough time spent developing a feasible and viable
design and planning, the size of the project is continually growing as new features
are introduced. Adding features one after another with little thought will
eventually result in the installation of unrealistic features.

 Publishing: Bringing the game to the industry may be difficult owing to the lack of
investment or outdated technologies. This is because the video game industry is
highly competitive and fast-paced.

 Management: Managing many resources while ensuring the project stays on
schedule necessitates effective communication between all participants and vigilant
supervision.

 Third parties and emerging technologies: The intense rivalry in the gaming
business drives the ongoing creation of innovative and cutting-edge new
technology. Managing this challenge could be problematic easier if the appropriate
technology is utilized.

 The organization of a team is a complex process since ensuring that all team
members are in check, thinking the same way, and working for the same common
goal is challenging.

 The project's success may be directly correlated to the process selected for its
development. Having a solid grasp of the procedure is also essential.

 These issues can also occur with the STB initiative and must be considered when
designing this new paradigm.

Even though Christopher M. Kanode and Hisham M. Haddad have devised several
solutions, such solutions need to match the criteria for the STB initiative. However,
knowing the presence of these difficulties as well as the significance of them is sufficient to
enable one to make conclusions and get the model ready to deal with them.

DIGITAL GAMES’ DEVELOPMENT MODEL

The problems with the STB described earlier are addressed, and a potential solution is
presented in this article in the form of a new model for game development (Desamsetti,

Dekkati: Blender and Unreal Engine Character Design and Behavior Programming for 3D Games (115-126)

Page 122 Volume 9, No 2/2020 | ABCJAR

2016b). In other words, the creation of high-quality video games that are effective via the
use of a methodical procedure rather than an ad hoc strategy to enhance the lives of
people who have disabilities through the collaboration of organizations that care for
children and undergraduate students (Pirovano et al., 2016).

The following game development models, each consisting of five stages and developed
with the information gained from software development models and the usual issues that
arise during the development of games, while also bearing in mind the entities involved in
the STB project, are offered.

Planning Stage: The purpose of this stage is to prepare for game production. First,
develop the game concept. Three key activities are suggested:

 Brainstorm: Develop game concepts by compiling feature ideas and conducting
market research to identify comparable or related games.

 The second activity, Meetup, involves meeting the "client ."In this situation,
daycare. The goal is for students and institutions to share ideas, hopes, and
features. Proper documentation of this meeting is crucial for the game development
process.

 Set-up, the final planning process, refines the game based on prior outcomes and
prepares for development.

All game features must be documented and a development timeline established, starting
with critical features. Maintain these documents in a portfolio for transparent project
supervision.

Design Stage: The Design stage includes creating and revising the game design and the
initial prototype. Like the preceding stage, it has three key activities: Appointment, the
initial activity, bridges the knowledge gap between institutions and students, preventing
communication breakdowns, and allowing students to obtain crucial information.
Throughout go-along visits, students observe personnel of the institution throughout their
daily routine, receive information on available resources and patient limits, and gain
insight into their target audience (Cardoso et al., 2017). In the second activity, the
prototype is developed, containing all game instances and adjustments to the earlier
planning to account for new features. The final phase, re-evaluation, involves creating
Game Design Documents with the final design, including features, planning, and the
initial prototype (Desamsetti & Lal, 2019). Remember to keep all completed documents
from all stages in a portfolio.

Development Stage: The Development stage is the main procedure for creating the game.
This stage uses an iterative approach for game creation. With each iteration, a new feature
is added, tested, and reviewed. A feature is produced and introduced to an existing
project before being tested. At this stage, the development team conducts functional tests,
not fun ones (Desamsetti, 2018).

An inspection of the completed project follows testing. Initially, a professor conducts the
inspection, followed by the institution. The initial inspection assesses if the institution
needs to clarify specifics and affirm or deny development decisions, ensuring the game
remains on schedule (Deming et al., 2018).

ABC Journal of Advanced Research, Volume 9, No 2 (2020) ISSN 2304-2621(p); 2312-203X (e)

CC-BY-NC 2014, i-Proclaim | ABCJAR Page 123

Evaluation: The evaluation step evaluates the game's functionality and enjoyment appeal.
This stage involves simple testing assessing both functional and enjoyable features
(Ballamudi, 2019c). The testing process involves three parts, each with assessment sheets.

The project has three phases: the first involves the development team and those who are
entirely familiar with it, the second involves those who are less familiar, and the third
involves those who fit the desired target, childcare institution members, and other
professionals.

Deployment: At this point, the "deployment to the masses" and the institution are under
this stage's purview. The development team must choose a way of deployment that the
institution may easily access while also considering the resources at their disposal. The
rollout should occur in two stages: initially, it should target the institution and then move
on to the broader public.

CONCLUSION

Two games were developed using the proposed paradigm for validation. To validate the
suggested model, the success of these games was compared to earlier games. In the
planning stage, the development team created a basic game with additional features. To
make the game more engaging, an activity was included. However, during the
appointment activity during the design stage, the childcare facility stated that the game
should be simple without extras. Extra features outside gaming. The goal was to Replace
and offer a fresh method of therapy. In this scenario, game simplicity was essential. So that
children with problems already Do not lose primary teaching in actions other than those
that boost their standing, degrading all work. The childcare institution and professor
accepted a simple prototype. The development stage featured four iterations. The first
iteration, core one difficulty level, was created for games. And few words. The subsequent
iterations increased the difficulty and words, all according to Childcare institution
specifications, and evaluated and met with their therapists. First, the professor considered
and then First by STB students, then members of the childcare center, and then patients.
The findings showed a simple, shallow game. However, it fits the establishment. The
deployment only targeted institutions since it was a focused game, but some changes
happened.

REFERENCES

Aleem, S., Fernando, C. L., Ahmed, F. (2016). A Digital Game Maturity Model (DGMM),
Entertainment Computing, 17, 55-73. http://dx.doi.org/10.1016/j.entcom.2016.08.004

Aleem, S., Capretz, L. F., Ahmed, F. (2016). Game Development Software Engineering
Process Life Cycle: A Systematic Review. Journal of Software Engineering Research and
Development, 4(1), 1-30. https://doi.org/10.1186/s40411-016-0032-7

Ballamudi, V. K. R. (2016). Utilization of Machine Learning in a Responsible Manner in the
Healthcare Sector. Malaysian Journal of Medical and Biological Research, 3(2), 117-
122. https://mjmbr.my/index.php/mjmbr/article/view/677

Ballamudi, V. K. R. (2019a). Artificial Intelligence: Implication on Management. Global
Disclosure of Economics and Business, 8(2), 105-
118. https://doi.org/10.18034/gdeb.v8i2.540

http://dx.doi.org/10.1016/j.entcom.2016.08.004
https://doi.org/10.1186/s40411-016-0032-7
https://mjmbr.my/index.php/mjmbr/article/view/677
https://doi.org/10.18034/gdeb.v8i2.540

Dekkati: Blender and Unreal Engine Character Design and Behavior Programming for 3D Games (115-126)

Page 124 Volume 9, No 2/2020 | ABCJAR

Ballamudi, V. K. R. (2019b). Road Accident Analysis and Prediction using Machine
Learning Algorithmic Approaches. Asian Journal of Humanity, Art and
Literature, 6(2), 185-192. https://doi.org/10.18034/ajhal.v6i2.529

Ballamudi, V. K. R. (2019c). Hybrid Automata: An Algorithmic Approach Behavioral
Hybrid Systems. Asia Pacific Journal of Energy and Environment, 6(2), 83-
90. https://doi.org/10.18034/apjee.v6i2.541

Ballamudi, V. K. R., & Desamsetti, H. (2017). Security and Privacy in Cloud Computing:
Challenges and Opportunities. American Journal of Trade and Policy, 4(3), 129–136.
https://doi.org/10.18034/ajtp.v4i3.667

Best, B. J. (2013). Inducing Models of Behavior From Expert Task Performance in Virtual
Environments. Computational and Mathematical Organization Theory, 19(3), 370-
401. https://doi.org/10.1007/s10588-012-9136-8

Cardoso, T., Sousa, J., Barata, J.  (2017). Digital Games’ Development Model. EAI Endorsed
Transactions on Serious Games, 4(12). https://doi.org/10.4108/eai.8-12-2017.153399

Chen, G., Li, B., Tian, F., Ji, P., Li, W. (2012). Design and Implementation of a 3D Ocean
Virtual Reality and Visualization Engine. Journal of Ocean University of China. JOUC,
11(4), 481-487. https://doi.org/10.1007/s11802-012-2112-6

Chen, S., Thaduri, U. R., & Ballamudi, V. K. R. (2019). Front-End Development in React:
An Overview. Engineering International, 7(2), 117–126.
https://doi.org/10.18034/ei.v7i2.662

Dekkati, S., & Thaduri, U. R. (2017). Innovative Method for the Prediction of Software
Defects Based on Class Imbalance Datasets. Technology & Management Review, 2, 1–5.
https://upright.pub/index.php/tmr/article/view/78

Dekkati, S., Lal, K., & Desamsetti, H. (2019). React Native for Android: Cross-Platform
Mobile Application Development. Global Disclosure of Economics and Business, 8(2),
153-164. https://doi.org/10.18034/gdeb.v8i2.696

Dekkati, S., Thaduri, U. R., & Lal, K. (2016). Business Value of Digitization: Curse or
Blessing?. Global Disclosure of Economics and Business, 5(2), 133-
138. https://doi.org/10.18034/gdeb.v5i2.702

Deming, C., Dekkati, S., & Desamsetti, H. (2018). Exploratory Data Analysis and
Visualization for Business Analytics. Asian Journal of Applied Science and
Engineering, 7(1), 93–100. https://doi.org/10.18034/ajase.v7i1.53

Desamsetti, H. (2016a). A Fused Homomorphic Encryption Technique to Increase Secure
Data Storage in Cloud Based Systems. The International Journal of Science &
Technoledge, 4(10), 151-155.

Desamsetti, H. (2016b). Issues with the Cloud Computing Technology. International
Research Journal of Engineering and Technology (IRJET), 3(5), 321-323.

Desamsetti, H. (2018). Internet of Things (IoT) Technology for Use as Part of the
Development of Smart Home Systems. International Journal of Reciprocal Symmetry
and Theoretical Physics, 5, 14–21.
https://upright.pub/index.php/ijrstp/article/view/89

https://doi.org/10.18034/ajhal.v6i2.529
https://doi.org/10.18034/apjee.v6i2.541
https://doi.org/10.18034/ajtp.v4i3.667
https://doi.org/10.1007/s10588-012-9136-8
https://doi.org/10.4108/eai.8-12-2017.153399
https://doi.org/10.1007/s11802-012-2112-6
https://doi.org/10.18034/ei.v7i2.662
https://upright.pub/index.php/tmr/article/view/78
https://doi.org/10.18034/gdeb.v8i2.696
https://doi.org/10.18034/gdeb.v5i2.702
https://doi.org/10.18034/ajase.v7i1.53
https://upright.pub/index.php/ijrstp/article/view/89

ABC Journal of Advanced Research, Volume 9, No 2 (2020) ISSN 2304-2621(p); 2312-203X (e)

CC-BY-NC 2014, i-Proclaim | ABCJAR Page 125

Desamsetti, H., & Lal, K. (2019). Being a Realistic Master: Creating Props and
Environments Design for AAA Games. Asian Journal of Humanity, Art and
Literature, 6(2), 193-202. https://doi.org/10.18034/ajhal.v6i2.701

Desamsetti, H., & Mandapuram, M. (2017). A Review of Meta-Model Designed for the
Model-Based Testing Technique. Engineering International, 5(2), 107–110.
https://doi.org/10.18034/ei.v5i2.661

Lal, K. (2015). How Does Cloud Infrastructure Work?. Asia Pacific Journal of Energy and
Environment, 2(2), 61-64. https://doi.org/10.18034/apjee.v2i2.697

Lal, K. (2016). Impact of Multi-Cloud Infrastructure on Business Organizations to Use
Cloud Platforms to Fulfill Their Cloud Needs. American Journal of Trade and

Policy, 3(3), 121–126. https://doi.org/10.18034/ajtp.v3i3.663

Lal, K., & Ballamudi, V. K. R. (2017). Unlock Data’s Full Potential with Segment: A Cloud
Data Integration Approach. Technology & Management Review, 2(1), 6–12.
https://upright.pub/index.php/tmr/article/view/80

Lal, K., Ballamudi, V. K. R., & Thaduri, U. R. (2018). Exploiting the Potential of Artificial
Intelligence in Decision Support Systems. ABC Journal of Advanced Research, 7(2),
131-138. https://doi.org/10.18034/abcjar.v7i2.695

Liang, L., Feng, G. (2012). A Game-Theoretic Framework for Interference Coordination in
OFDMA Relay Networks. IEEE Transactions on Vehicular Technology, 61(1), 321-332.
https://doi.org/10.1109/TVT.2011.2176356

Ma, S. G. (2013). The Research of Next-Gen Game Engine Virtual Reality in Actual Project.
 Applied Mechanics and Materials, 443,
39. https://doi.org/10.4028/www.scientific.net/AMM.443.39

Pirovano, M., Mainetti, R., Baud-Bovy, G., Lanzi, P. L., Borghese, N. A. (2016). Intelligent
Game Engine for Rehabilitation (IGER). IEEE Transactions on Computational
Intelligence and AI in Games, 8(1), 43-55,
https://doi.org/10.1109/TCIAIG.2014.2368392

Thaduri, U. R. (2017). Business Security Threat Overview Using IT and Business
Intelligence. Global Disclosure of Economics and Business, 6(2), 123-
132. https://doi.org/10.18034/gdeb.v6i2.703

Thaduri, U. R. (2018). Business Insights of Artificial Intelligence and the Future of
Humans. American Journal of Trade and Policy, 5(3), 143–150.
https://doi.org/10.18034/ajtp.v5i3.669

Thaduri, U. R. (2019). Android & iOS Health Apps for Track Physical Activity and
Healthcare. Malaysian Journal of Medical and Biological Research, 6(2), 151-
156. https://mjmbr.my/index.php/mjmbr/article/view/678

Thaduri, U. R., Ballamudi, V. K. R., Dekkati, S., & Mandapuram, M. (2016). Making the
Cloud Adoption Decisions: Gaining Advantages from Taking an Integrated
Approach. International Journal of Reciprocal Symmetry and Theoretical Physics, 3, 11–
16. https://upright.pub/index.php/ijrstp/article/view/77

https://doi.org/10.18034/ajhal.v6i2.701
https://doi.org/10.18034/ei.v5i2.661
https://doi.org/10.18034/apjee.v2i2.697
https://doi.org/10.18034/ajtp.v3i3.663
https://upright.pub/index.php/tmr/article/view/80
https://doi.org/10.18034/abcjar.v7i2.695
https://doi.org/10.1109/TVT.2011.2176356
file:///C:/Users/Administrator/AppData/Local/Microsoft/Windows/INetCache/IE/FVORMDJ3/ https:/doi.org/10.4028/www.scientific.net/AMM.443.39
https://doi.org/10.1109/TCIAIG.2014.2368392
https://doi.org/10.18034/gdeb.v6i2.703
https://doi.org/10.18034/ajtp.v5i3.669
https://mjmbr.my/index.php/mjmbr/article/view/678
https://upright.pub/index.php/ijrstp/article/view/77

Dekkati: Blender and Unreal Engine Character Design and Behavior Programming for 3D Games (115-126)

Page 126 Volume 9, No 2/2020 | ABCJAR

Turner, W. A., Thomas, B., Casey, L. M.  (2016). Developing Games for Mental Health: A
Primer. Professional Psychology: Research and Practice, 47(3), 242-249.
https://doi.org/10.1037/pro0000082

Yoon, D-M., Kim, K-J. (2015). Challenges and Opportunities in Game Artificial Intelligence
Education Using Angry Birds. IEEE Access, 3, 793-804.
https://doi.org/10.1109/ACCESS.2015.2442680

--0--

https://doi.org/10.1037/pro0000082
https://doi.org/10.1109/ACCESS.2015.2442680

