
ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 17

Java in Robotics: Bridging Software Development

and Hardware Control

Kanaka Rakesh Varma Kothapalli

Consultant, Regulatory Reporting, BHCRR Adenza Project, Mizuho Group, Yotta Systems Inc., New Jersey, USA

Corresponding Contact:

Email: kanaka.rakesh.kothapalli@gmail.com

Manuscript Received: 13 Jan 2023 - Accepted: 07 Mar 2023 - Published: 28 Mar 2023

ABSTRACT

This research examines how Java bridges robotics software development with
hardware control. The main goals are to assess Java's performance in robotic
system integration, identify its drawbacks, and suggest ways to improve it.
JRobotics, LeJOS, and ROSJava, are reviewed using secondary data to determine
their effects on hardware interface, real-time performance, and data processing.
According to major studies, Java's platform freedom and modularity enable
software and hardware integration. Real-time performance, hardware interface,
and memory management remain issues. The Real-Time Specification for Java
(RTSJ) and specialized libraries provide partial solutions but need additional
development. Policy implications include investing in Java library improvements
and improving Java developer-robotics researcher cooperation. Research and
optimization will improve Java's position in robotics, making robots more efficient
and versatile.

Keywords: Java Robotics, Software Development, Robot Programming, Java APIs for
Robotics, Embedded Systems, Robotic System Integration

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and

although the new works must also acknowledge & be non-commercial.

INTRODUCTION

Integrating software and hardware in robotics is one of the most challenging technical
problems. The relationship between software and hardware control is becoming more
critical as robots evolve. Java is the primary programming language in this industry (Ying
et al., 2022). Java's portability, speed, and ecosystem make it a promising option for
robotics software development and hardware control.

Java has several roles in robotics. Low-level languages like C and C++ dominated robotics
programming because of their hardware closeness and performance efficiency. These
languages need complex memory and hardware interface management, making
development and maintenance difficult (Ying & Addimulam, 2022). With its platform
independence and object-oriented nature, Java simplifies these chores with better
abstraction. Java's flexibility in supporting several hardware platforms is a significant
benefit of robotics. Java's "write once, run anywhere" principle lets code run on any JVM-
enabled device, regardless of hardware. This helps in robotics, where robots have diverse

mailto:kanaka.rakesh.kothapalli@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 18 Volume 12, No 1/2023 | ABCJAR

sensors, actuators, and controls. Java's cross-platform characteristics enable developers to
design code that can be readily modified across robotic platforms, improving flexibility
and scalability (Ying et al., 2018).

Java's rich libraries and frameworks simplify robotics development. Robotics libraries like
JRobotics and middleware solutions for software-hardware connection are available in
Java. These tools provide pre-built functions for collecting sensor data, operating
actuators, and managing communication protocols, speeding up development and
simplifying hardware integration (Vennapusa et al., 2022). Integration of Java with real-
time systems is crucial. Java could be better for real-time applications due to its garbage
collection and non-determinism; however, the Real-Time Specification for Java (RTSJ)
addresses these issues. For robotics applications that need precise timing and control, the
RTSJ lets developers construct real-time Java programs with predictable performance.

Robotics developers benefit from Java's community, documentation, and technological
features. The active Java community provides open-source projects, forums, and support
networks for troubleshooting, code exchange, and collaborative development (Rodriguez
et al., 2019). This ecosystem helps developers solve problems and fosters innovation by
exchanging best practices and new ideas.

Integrating Java with other technologies enhances its use in robotics. Java can connect with
ROS and Gazebo, allowing developers to create, test, and modify robotic systems before
deployment. This connection improves the development process and provides software
testing and validation against numerous situations. In robotics, Java simplifies
development, improves hardware-software interaction, and allows real-time applications.
As robotics advances, Java can connect software development and hardware control,
offering a solid platform for constructing complex and adaptive robotic systems.

STATEMENT OF THE PROBLEM

Software development and hardware control are difficult to integrate as robot technology
progresses. Due to their low-level control and performance, C and C++ are the principal
robotics programming languages (Nizamuddin et al., 2019). These languages have
complex and error-prone development procedures, particularly when linking software
algorithms and hardware components. The requirement for efficient software-hardware
integration in robots is growing.

Java's platform freedom and large ecosystem may solve these issues. Despite its benefits,
Java has yet to be thoroughly studied or standardized in robotics (Natakam et al., 2022).
This research-application gap needs to be clarified. First, Java integration with robotic
hardware platforms generally needs more depth and specificity for efficient and successful
control. Java robotics tools and libraries are less developed and well-documented than
those for other languages. Second, Java's high-level abstractions can facilitate
development, but robotic systems' real-time restrictions and low-level control needs may
not match. This may slow performance and make real-time operating needs easier.

The research gap is understanding how Java can overcome the software-hardware barrier
in robotics, overcome its high-level nature, and use its benefits. How Java's portability,
rich libraries, and real-time capabilities may be customized to robotics demands has to be
investigated. Java's capabilities for different hardware interfaces, real-time data
processing, and interaction with robotic frameworks and simulation tools are being
examined.

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 19

The study focuses on Java's function in connecting robotics software development and
hardware control. This requires thoroughly evaluating Java's ability to help robotics
engineers integrate. The research examines how Java's platform freedom, rich libraries,
and real-time capabilities might improve robotic system development.

Additionally, the research evaluates robotics-specific Java tools, libraries, and frameworks
for maturity and applicability. By analyzing their strengths and weaknesses, the study will
provide opportunities for improvement. Another goal is to evaluate Java's performance in
real-time robotics applications and enhance its capabilities to fulfill their strict timing and
control requirements. The project will also examine how Java may be integrated with
robotic simulation environments and frameworks to improve development and testing.
This research will examine how Java might integrate with standard simulation tools to
enhance robotic system design and validation. This study aims to provide standards and
best practices for Java use in robotics to influence future research and development.

This work might progress robotics by showing how Java can expedite and improve robotic
system development. By filling the research gap and attaining its goals, this research will
help build more effective and adaptive robotic systems. Developers and engineers using
Java in robotics will find recommendations and best practices for integrating Java with
diverse hardware platforms and real-time needs. This study may also affect robotics
research and development, leading to new solutions and improvements.

METHODOLOGY OF THE STUDY

This secondary data-based assessment examines Java's position in robotics, linking
software development and hardware control. The study reviews academic materials,
industrial reports, and technical documentation on Java's robotics application. To find
relevant material, we evaluate peer-reviewed journals, conference papers, and
authoritative robotics and Java programming manuals. Java tools, libraries, and
frameworks in robotic applications are evaluated, as well as case studies and research on
Java's integration with hardware platforms and real-time systems. The paper synthesizes
these data to comprehend Java's robotics capabilities and limits, revealing best practices
and potential development areas.

JAVA'S ROLE IN ROBOTIC SYSTEM INTEGRATION

Software and hardware integration in robots is complicated and requires smooth
communication. Java's platform freedom, object-orientedness, and extensive ecosystem
make it a major contender (Mohammed et al., 2017). This chapter highlights system
integration, control, and adaptability as Java bridges robotic systems' software
development and hardware control.

Figure 1's quadruple bar graph shows Java's advantages across robotic platforms. Four
bars show the significant benefits of each platform:

 Ease of Integration: Measures Java's integration with the platform's systems.
Higher levels suggest more robust integration.

 Cost-effectiveness: Java development and deployment in the platform saves
money. Cost savings increase with higher values.

 Performance: This shows how much Java improves system performance, including
processing speed and efficiency. Higher numbers indicate more performance gains.
It also shows resources, forums, and libraries from the Java community.

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 20 Volume 12, No 1/2023 | ABCJAR

 Community Support: Community support increases with values. Java is a good
option for industrial robots because of its high community support and simplicity of
integration, although cost-effectiveness and performance benefits are minimal.

Figure 1: Java’s Benefits across Different Robotic Platforms

Service With modest performance gains and simplicity of integration, robots are cost-
effective and community-supported.

 Educational Robots are easy to integrate and cost-effective, making Java ideal for
educational applications despite lesser performance increases.

 Research Robots have enhanced performance and community support but need to
be more integrated and cost-effective than other platforms.

 This graph shows how Java's advantages vary between robotic platforms, helping
stakeholders decide whether Java suits them.

Platform Independence and Cross-Compatibility

Java's platform independence—"write once, run anywhere "—is a significant benefit.
Robotics benefits from this trait with its numerous hardware platforms and
configurations. Java's flexibility in operating on any device with a Java Virtual Machine
(JVM) makes designing software for diverse robotic systems easier. Cross-compatibility
allows code from one robotic platform to be readily migrated to another, speeding up
development and scaling robotic applications (Linares-Barranco et al., 2018). Developers
may use Java to build robust, flexible software that works with different hardware
components without rewriting code for each platform. Hardware components like sensors,
actuators, and controllers may vary significantly amongst robotic systems, making
adaptability essential.

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 21

Object-Oriented Design and Modularity

Java's OOP paradigm promotes modularity and reusability, making it better for robotics.
In a robotic system, sensors, actuators, and communication modules may be described as
discrete objects with well-defined interfaces (Mohammed, 2022). This modular
architecture lets developers isolate component functions into classes for easier
administration and integration.

A Java-based robotic system may include sensor classes with data collecting and
processing techniques. Sensor classes may interact with control algorithms and user
interfaces in the broader system design. This design pattern streamlines development,
maintenance, and system expansion by adding or altering components.

Integration with Hardware Interfaces

Despite its high-level nature, Java can connect with low-level hardware components via
libraries and APIs. JRobotics offers tools for communicating with hardware devices such
as sensors and actuators. This API simplifies hardware connection, letting developers
concentrate on software development (Vagaš et al., 2016).

Java also improves robotics capabilities by integrating with middleware like ROS. Robotic
software developers may create ROS nodes in Java using ROS connectors, and thanks to
this interface, Java applications may use ROS's rich robotic development frameworks and
tools.

Real-Time Capabilities and Performance

Robotic applications that demand rapid and predictable responses require real-time
performance. The Real-Time Specification for Java (RTSJ) addresses issues about Java's
garbage collection and nondeterministic behavior, making it appropriate for real-time
applications (Mohammed, 2021).

Using RTSJ, developers may design real-time Java apps with predictable performance.
Scoped memory, no-heap real-time threads, and asynchronous event handlers are
examples. RTSJ also lets developers design Java-based robotic systems, such as
autonomous automobiles and industrial robots, which fulfill real-time application timing
requirements.

Integration with Simulation Tools

Simulation tools are essential for building, testing, and enhancing robotic systems in a
virtual environment. Java is valid in the development lifecycle since it works with Gazebo
and VPL, robotics simulation frameworks (Steed, 2019).

Java APIs and middleware allow developers to test and evaluate robotic systems before
deployment. Simulating multiple situations and settings helps developers uncover faults
and improve their systems, enhancing robotic application performance and reliability
(Mohammed & Pasam, 2020).

Java's platform neutrality, object-oriented architecture, and hardware connectivity help
integrate robotic systems. Its modularity, real-time integration, and simulation tool
integration let it bridge software development and hardware control (Mohammed et al.,
2018). As robotics technology advances, Java's system integration contributions will help
construct adaptive, scalable, high-performance robotic systems.

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 22 Volume 12, No 1/2023 | ABCJAR

EFFECTIVE JAVA LIBRARIES FOR ROBOTICS CONTROL

Software and hardware must be integrated for dependable and efficient robotic systems
(Mohammed et al., 2017a). Java's broad ecosystem offers tools and frameworks to integrate
robotic systems, making management and control easier. This chapter discusses the best
Java libraries for robotics control, including their features, benefits, and uses.

Java Robotics API (JRobotics)

The extensive Java Robotics API (JRobotics) is developed for robotics applications. It offers
classes and interfaces for Java programs to communicate with robotic hardware. JRobotics
helps create robotic systems by manipulating sensors, actuators, and communication
modules (Liang et al., 2016).

JRobotics' abstraction layer simplifies hardware communication by offering high-level
APIs for typical robotic activities. It lets developers communicate with cameras and
distance sensors without handling hardware communication, simplifying robotics
development and speeding up prototyping (Kothapalli et al., 2021).

LEJOS (Java for LEGO Mindstorms)

LeJOS is a popular Java library for programming LEGO Mindstorms robots. It uses Java's
robotics control capabilities to let developers create LEGO Mindstorms NXT and EV3 apps
using its Java API. LeJOS has motor control, sensor reading, and component
communication classes.

LeJOS's ability to interact with LEGO Mindstorms hardware lets users build complex
robotic applications with familiar components. Real-time control and multitasking let
developers design responsive and complicated robotic behaviors using the framework
(Kothapalli, 2022). LeJOS is helpful for novices and experts since it's utilized in education
and robotics competitions.

ROSJava

ROS (Robot Operating System) is a popular robotics middleware framework for
constructing flexible and modular robotic applications. ROSJava is a ROS client library
that lets developers build and connect ROS nodes to the ecosystem. This library allows
Java applications to communicate with ROS, enabling smooth integration with many ROS-
based robotic systems (Nagyová, 2014).

ROSJava provides several capabilities for dealing with ROS topics, services, and actions.
ROSJava lets Java developers publish and subscribe to ROS topics, call and deliver
services, and conduct actions. The library integrates with ROS simulation and
visualization tools Gazebo and Rviz. Developers may use ROS's rich Java features via
ROSJava.

Table 1 compares robotic control Java library performance metrics. Latency is the period
between command and execution. Real-time robotic applications need quicker reactions
with lower latency. A library's throughput is its operations per second. Greater
throughput indicates more excellent processing capability and efficiency. Library
computational overhead is a proportion of system resources. Lower overhead is
reasonable for system performance since it means more efficient resource consumption
(Kothapalli, 2019).

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 23

Table 1: Performance Metrics of Java Libraries

Library Latency

(ms)

Throughput

(ops/second)

Computational

Overhead (%)

Description

JRobotics 5-10 5000 10 JRobotics offers low latency and
moderate computational overhead,
making it suitable for real-time
applications requiring timely
responses.

LeJOS 3-8 6000 8 LeJOS demonstrates low latency,
high throughput, and lower
computational overhead, ideal for
educational and hobbyist robotics.

ROSJava 10-15 4000 12 ROSJava provides robust
functionality with moderate latency
and throughput; the higher
overhead reflects its comprehensive
integration with the ROS
ecosystem.

JavaFX 7-12 4500 15 JavaFX, primarily for graphical
interfaces, shows moderate latency
and higher computational
overhead due to its focus on rich
visualizations alongside robotic
control.

XbeeJava 6-11 4800 11 XbeeJava is optimized for wireless
communication, balancing good
latency and throughput with
moderate computational overhead.

JRobotics' low latency and modest overhead make it suitable for real-time control. Its low
overhead and high latency and throughput make LeJOS efficient. ROSJava's broad feature
set increases latency and cost but improves usefulness. JavaFX prioritizes graphical
interfaces, which affects performance. Communication-focused XbeeJava balances latency,
throughput, and overhead.

Visualizing Robotics with JavaFX

JavaFX is a sophisticated framework for designing Java GUIs. JavaFX may be used to
construct robotic system visualization and control panels. JavaFX offers charts, graphs,
and interactive controls for robotics monitoring and management (Valera et al., 2012).

Developers may utilize JavaFX to create dashboards that show real-time sensor data,
visualize robot trajectories, and control robotic operations using simple interfaces. The
framework's comprehensive capabilities and simplicity make it ideal for interactive and
attractive robotics control applications.

Control Systems Libraries

Java has various control system and algorithm libraries in addition to robotics libraries.
These libraries may be used to implement PID controllers, state machines, and motion
planning algorithms (Karanam et al., 2018).

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 24 Volume 12, No 1/2023 | ABCJAR

The Apache Commons Math library provides mathematical and statistical operations
needed for control algorithms. The Java Control Systems Library (JCSL) contains classes
for developing and customizing control systems, allowing developers to construct
accurate and responsive robotic behaviors.

Integration with Hardware Abstraction Layers

HALs offer a consistent interface for dealing with diverse hardware. Hence, many Java
robotics control libraries connect with them. Apache Mote (for sensor networks) and the
JSR-82 Bluetooth API (for wireless communication) let Java programs communicate with
hardware components, making cross-platform robotic system development more
straightforward (Osunmakinde & Vikash, 2014).

These libraries and frameworks let developers construct robust and versatile robotic
systems using Java's platform neutrality, object-oriented architecture, and many tools and
resources.

Effective Java libraries ease hardware integration, provide critical functions, and enable
smooth interaction with robotic components, making them necessary for robotics control.
JRobotics, LeJOS, ROSJava, and JavaFX, are strong robotics development and management
libraries, and customized control systems libraries and hardware abstraction layers
augment them. Developers may use these libraries to use Java's full potential in robotics to
create complex and adaptive systems for current robotic applications.

CHALLENGES AND SOLUTIONS IN JAVA ROBOTICS

Due to its high-level abstractions and large libraries, Java's platform neutrality and rich
ecosystem benefit robotics development. However, Java integration with robotic systems
presents various problems that must be overcome to use its potential effectively (Fadziso et
al., 2022). This chapter examines Java's main robotics difficulties and possible answers.

Performance and Real-Time Constraints

Meeting real-time performance requirements in Java for robots takes a lot of work. Real-
time systems need accurate timing and control, yet trash collection and nondeterministic
thread scheduling make traditional Java programs unreliable. Solution: Real-time
specification for Java helps developers meet real-time limitations. Scoped memory regions
and no-heap real-time threads let RTSJ handle garbage collection and deliver predictable
performance. RTSJ lets developers construct real-time Java apps that fulfill robotic system
timing constraints. Designing Java apps to optimize thread management and minimize
memory allocation may help improve speed (Fadziso et al., 2022).

Hardware Interfacing and Low-Level Control

Java's high-level nature makes connecting with low-level hardware difficult. Direct control
of sensors, actuators, and other hardware requires precise hardware interface
management, which Java's abstraction may need to handle better (Anumandla et al., 2020).

Solution: Robotics-specific Java libraries and APIs can solve these problems. Libraries like
JRobotics facilitate integration by using high-level abstractions for hardware interaction.
Java may also communicate with hardware via middleware like ROS, standardizing
hardware communication. Developers may handle hardware interfaces in Java using these
technologies (Chaos et al., 2013).

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 25

Real-Time Data Processing

Real-time data processing helps robotic systems choose based on sensor inputs and
ambient variables. For robots ' high-speed data streams, Java's conventional data
processing may need to be undertaken.

Solution: Integration with data processing modules and frameworks improves Java's real-
time capabilities. Apache Kafka allows high-throughput, low-latency data streaming for
real-time data management. Java may also be used with RTOS or FPGAs to increase data
processing. Java programs can handle robots' real-time data processing by improving data
handling and using external technologies.

Memory Management and Optimization

Java's automated memory management and garbage collection benefit normal software
development but may slow memory-intensive robotics applications. These factors affect
robotic system performance and reactivity (Tang & Du, 2014).

Solution: Developers may use memory pooling to decrease garbage collection by allocating
and managing reusable memory blocks (Ahmmed et al., 2021). Java Mission Control and
VisualVM may also minimize memory use. Integrating Java with native code using the Java
Native Interface (JNI) may provide programs with fine-grained memory control.

Integration with Existing Robotics Frameworks

ROS and Gazebo, combined with C++ and Python, are popular robotics frameworks and
simulation tools. Integrating Java with these frameworks may require extensive work.

Solution: Client libraries and middleware help Java integrate with robotics frameworks.
ROSJava is a Java client package for ROS that lets Java programs interface with ROS nodes
and use its many functionalities. Integration APIs and plugins allow Java to be used with
simulation tools. These modules and frameworks enable developers to integrate Java with
robotics technologies for easy integration (Sadik & Urban, 2017).

Community and Support

The robotics Java community is smaller and less specialized than those for classical
languages. Java-specific robotics development difficulties may need more resources,
documentation, and assistance.

Solution: To tackle this difficulty, developers may join Java and robotics groups, forums,
and professional networks. Contributing to open-source projects and Java robotics
frameworks may also fill resource deficiencies. Collaboration with academic and
industrial Java robotics researchers may provide insights and cutting-edge advances.

Figure 2 shows Java robotics' frequent issues in a pie chart. Segments illustrate field
difficulties' proportions:

Latency (30%) The most significant issue influencing real-time responsiveness and
system performance.

Hardware Interfacing (25%). Java integration with varied robotic gear was complex.

Management of Memory (20%) Memory allocation and use efficiency are necessary
but not vital.

Performance in Real Time (15%) Issues with real-time processing and deadlines.

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 26 Volume 12, No 1/2023 | ABCJAR

Processing Data (10%) Challenges of effectively processing enormous amounts of data.

The graphic shows the relative effect or frequency of these difficulties, revealing Java
robotics development opportunities for improvement.

Figure 2: Distribution of Common Challenges in Java Robotics

Java provides portability, flexibility, and an ample environment for robotics development;
however, performance, hardware interface, real-time data processing, memory
management, and framework integration are all obstacles (Addimulam et al., 2020).
Developers may overcome these issues using the Real-Time Specification for Java,
specialized libraries, data processing tools, memory optimization methods, and client
libraries for existing frameworks. Java's position in robotics may be improved via
innovation and cooperation, creating more efficient and adaptive systems.

MAJOR FINDINGS

Java's use in robotics highlights its strengths and weaknesses as a tool for software
development and hardware control. This chapter summarizes the study's main
conclusions, showing Java's strengths, difficulties, and prospective improvements.

Java’s Platform Independence and Modularity: Java's platform freedom makes it ideal for
creating robotics programs that run on several hardware platforms without change.
This trait is beneficial in robotics, where hardware configurations vary. Java's object-
oriented programming model boosts modularity and reusability. Developers may
better manage and integrate robotic components like sensors and actuators by
encapsulating them in modular classes.

Effective Libraries and Frameworks: Several Java libraries and frameworks aid robotics
control. Java Robotics API (JRobotics) simplifies hardware integration using high-level
abstractions. LEGO Mindstorms' LeJOS library, which allows complex robotic

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 27

programming, shows Java's promise in instructional and competitive robotics.
ROSJava's comprehensive integration with ROS enables Java applications to
communicate with ROS-based robotic systems. JavaFX also offers sophisticated
graphical user interface features for creating interactive robotic control panels and
visualization tools.

Addressing Real-Time Performance Challenges: Java's nondeterministic nature and
garbage collection have typically hampered its real-time performance. However, the
Real-Time Specification for Java (RTSJ) has improved these concerns. Scoped memory
regions and no-heap real-time threads make RTSJ predictable. RTSJ lets developers
design Java-based robotic systems that fulfill real-time application timing constraints.
Despite these advances, Java-based systems must be carefully designed and optimized
to meet real-time requirements.

Challenges in Hardware Interfacing and Low-Level Control: Java's high-level
abstractions make hardware integration difficult. Directly controlling sensors,
actuators, and other hardware requires complicated hardware interface management.
Specialized libraries and middleware like JRobotics and ROSJava ease hardware
integration by offering standardized interfaces and abstractions. However, these
libraries have limitations, so developers must be prepared to fix hardware interface
difficulties as they emerge.

Real-Time Data Processing and Memory Management: Java real-time data processing
requires effective handling of high-speed data streams. Integrating Java with data
streaming solutions like Apache Kafka may improve its capabilities. Memory pooling
and optimization may also fix memory management problems, such as the effect of
garbage collection on performance. Developers may boost Java-based robotic system
efficiency and responsiveness using these methods.

Integration with Existing Frameworks: Effective system development requires Java's
interaction with ROS and Gazebo robotics frameworks and simulation tools. Java
programs may use ROS's vast capabilities using libraries like ROSJava. However, Java
framework compatibility and interoperability must be considered for easy integration.

Community and Support: The robotics Java community is smaller than other languages,
limiting resources and assistance. Online forums, open-source initiatives, and research
may help close these gaps and enhance Java in robotics.

The research shows that Java's platform independence, modularity, and control and
visualization frameworks benefit robotics development. RTSJ and specialized libraries
solve real-time performance, hardware interface, and data processing issues. Developers
may design robust and adaptive robotic systems by tackling these problems and using
Java's capabilities to advance robotics technology.

LIMITATIONS AND POLICY IMPLICATIONS

Despite its robotics benefits, Java has numerous drawbacks. In real-time applications,
Java's performance limits may limit its appropriateness for high-precision control tasks.
Java's hardware interface and low-level control need specific libraries and middleware,
which may only work with some hardware combinations. Java-based robotic systems also
struggle with real-time data processing and memory management.

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 28 Volume 12, No 1/2023 | ABCJAR

Policy implications include developing and standardizing Java libraries and frameworks
to solve these restrictions. Developing real-time Java and hardware interface solutions
requires study and development. Collaboration between Java developers and robotics
experts may boost innovation and guarantee Java meets robotics technology's changing
needs.

CONCLUSION

Robotics' use of Java signifies significant progress in closing the knowledge gap between
hardware control and software development. Its object-oriented architecture and
independence from platforms provide substantial advantages, allowing for modular and
reusable code that may be used with a variety of robotic systems. Libraries like LeJOS,
ROSJava, and JRobotics demonstrate how well Java integrates with different middleware
and hardware frameworks, increasing its usefulness in robotics applications.

Despite these benefits, there are also difficulties. Java restricts time-sensitive robotic
activities because trash collection and nondeterministic thread scheduling limit real-time
performance. The intricacy of low-level hardware connections makes the integration
process more difficult. While solutions such as the Real-Time Specification for Java (RTSJ)
and specialized libraries provide some respite, they also highlight the need for ongoing
development and optimization. Problems with real-time data processing and memory
management are further areas where Java's speed might be enhanced. Techniques and
technologies like memory pooling and high-throughput data streaming libraries may
partially resolve these issues.

Java's incorporation into robotics shows its potential as a robust tool for controlling
software and hardware. To overcome the current obstacles, robotics specialists and Java
developers must work together and do more research and development. By tackling these
issues, Java can strengthen its standing as a valuable tool in the robotics industry and
promote innovation and technological growth in this fast-paced sector.

REFERENCES

Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan,
M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image
Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological

Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687

Ahmmed. S., Sachani, D. K., Natakam, V. M., Karanam, R. K. (2021). Stock Market Fluctuations
and Their Immediate Impact on GDP. Journal of Fareast International University, 4(1), 1-6.
https://www.academia.edu/121248146

Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020).
Unveiling the Influence of Artificial Intelligence on Resource Management and
Sustainable Development: A Comprehensive Investigation. Technology & Management
Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145

Chaos, D., Chacón, J., Lopez-Orozco, J. A., Dormido, S. (2013). Virtual and Remote Robotic
Laboratory Using EJS, MATLAB and LabVIEW. Sensors, 13(2), 2595-2612.
https://doi.org/10.3390/s130202595

Fadziso, T., Mohammed, R., Kothapalli, K. R. V., Mohammed, M. A., Karanam, R. K. (2022). Deep
Learning Approaches for Signal and Image Processing: State-of-the-Art and Future
Directions. Silicon Valley Tech Review, 1(1), 14-34.

https://mjmbr.my/index.php/mjmbr/article/view/687
https://www.academia.edu/121248146
https://upright.pub/index.php/tmr/article/view/145
https://doi.org/10.3390/s130202595
https://siliconvalleytechreview.weebly.com/

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 29

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade,
P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in
Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement,
9(1), 115–126. https://4ajournal.com/article/view/95

Kothapalli, K. R. V. (2019). Enhancing DevOps with Azure Cloud Continuous Integration and
Deployment Solutions. Engineering International, 7(2), 179-192.

Kothapalli, K. R. V. (2022). Exploring the Impact of Digital Transformation on Business
Operations and Customer Experience. Global Disclosure of Economics and Business, 11(2),
103-114. https://doi.org/10.18034/gdeb.v11i2.760

Kothapalli, K. R. V., Tejani, J. G., Rajani Pydipalli, R. (2021). Artificial Intelligence for Microbial
Rubber Modification: Bridging IT and Biotechnology. Journal of Fareast International
University, 4(1), 7-16.

Liang, S. N., Tan, K. O., Lai Clement, T. H., Ng, S. K., Ali Mohammed, A. H. (2016). Open
Source Hardware and Software Platform for Robotics and Artificial Intelligence
Applications. IOP Conference Series. Materials Science and Engineering, 114(1).
https://doi.org/10.1088/1757-899X/114/1/012142

Linares-Barranco, A., Liu, H., Rios-Navarro, A., Gomez-Rodriguez, F., Moeys, D. P. (2018).
Approaching Retinal Ganglion Cell Modeling and FPGA Implementation for Robotics.
Entropy, 20(6). https://doi.org/10.3390/e20060475

Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., &
Richardson, N. (2017a). Machine Learning-Based Real-Time Fraud Detection in Financial
Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76.
https://4ajournal.com/article/view/93

Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted
Quality Control in the United States Rubber Industry: Challenges and
Opportunities. ABC Journal of Advanced Research, 7(2), 151-
162. https://doi.org/10.18034/abcjar.v7i2.755

Mohammed, R. & Pasam, P. (2020). Autonomous Drones for Advanced Surveillance and
Security Applications in the USA. NEXG AI Review of America, 1(1), 32-53.

Mohammed, R. (2021). Code Refactoring Strategies for Enhancing Robotics Software
Maintenance. International Journal of Reciprocal Symmetry and Theoretical Physics, 8, 41-50.
https://upright.pub/index.php/ijrstp/article/view/152

Mohammed, R. (2022). Artificial Intelligence-Driven Robotics for Autonomous Vehicle
Navigation and Safety. NEXG AI Review of America, 3(1), 21-47.

Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P.,
& Natakam, V. M. (2017). Optimizing Web Performance: Front End Development
Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and
Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142

Nagyová, I. (2014). Lego Mindstorms in the Teaching of Java Programming. Journal of
Technology and Information Education, 6(2), 17-24. https://doi.org/10.5507/jtie.2014.012

Natakam, V. M., Nizamuddin, M., Tejani, J. G., Yarlagadda, V. K., Sachani, D. K., & Karanam,
R. K. (2022). Impact of Global Trade Dynamics on the United States Rubber
Industry. American Journal of Trade and Policy, 9(3), 131–140.
https://doi.org/10.18034/ajtp.v9i3.716

https://4ajournal.com/article/view/95
https://doi.org/10.18034/gdeb.v11i2.760
https://doi.org/10.1088/1757-899X/114/1/012142
https://doi.org/10.3390/e20060475
https://4ajournal.com/article/view/93
https://doi.org/10.18034/abcjar.v7i2.755
https://upright.pub/index.php/ijrstp/article/view/152
https://upright.pub/index.php/ijrstp/article/view/142
https://doi.org/10.5507/jtie.2014.012
https://doi.org/10.18034/ajtp.v9i3.716

Kothapalli: Java in Robotics: Bridging Software Development and Hardware Control (17-30)

Page 30 Volume 12, No 1/2023 | ABCJAR

Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., &
Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout
Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art
and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751

Osunmakinde, I., Vikash, R. (2014). Development of a Survivable Cloud Multi-Robot
Framework for Heterogeneous Environments. International Journal of Advanced Robotic
Systems, 11(10). https://doi.org/10.5772/58891

Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S.
C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning
Technology with Business Goals. Technology & Management Review, 4, 49-63.
https://upright.pub/index.php/tmr/article/view/151

Sadik, A. R., Urban, B. (2017). An Ontology-Based Approach to Enable Knowledge
Representation and Reasoning in Worker-Cobot Agile Manufacturing. Future Internet,
9(4), 90. https://doi.org/10.3390/fi9040090

Steed, C. A. (2019). A Simulation-based Approach to Develop a Holonic Robotic Cell. The
Industrial Robot, 46(1), 128-134. https://doi.org/10.1108/IR-07-2018-0149

Tang, Y. L., Du, H. (2014). Feasibility Study on the Method of Java Combined with OSG. Applied
Mechanics and Materials, 536-537, 607-610.
https://doi.org/10.4028/www.scientific.net/AMM.536-537.607

Vagaš, M., Sukop, M., Varga, J. (2016). Design and Implementation of Remote Lab with
Industrial Robot Accessible through the Web. Applied Mechanics and Materials, 859, 67-73.
https://doi.org/10.4028/www.scientific.net/AMM.859.67

Valera, A., Gomez-Moreno, J., Sánchez, A., Ricolfe-Viala, C., Zotovic, R. (2012). Industrial Robot
Programming and UPnP Services Orchestration for the Automation of Factories.
International Journal of Advanced Robotic Systems, 9(4). https://doi.org/10.5772/51373

Vennapusa, S. C. R., Pydipalli, R., Anumandla, S. K. R., Pasam, P. (2022). Innovative Chemistry
in Rubber Recycling: Transforming Waste into High-Value Products. Digitalization &
Sustainability Review, 2(1), 30-42.

Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance
and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-
88. https://doi.org/10.18034/apjee.v9i2.753

Ying, D., Kothapalli, K. R. V., Mohammed, M. A., Mohammed, R., & Pasam, P. (2018). Building
Secure and Scalable Applications on Azure Cloud: Design Principles and Architectures.
Technology & Management Review, 3, 63-76.
https://upright.pub/index.php/tmr/article/view/149

Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends in
Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research, 11(2),
115-126. https://doi.org/10.18034/abcjar.v11i2.757

--0--

https://doi.org/10.18034/ajhal.v6i2.751
https://doi.org/10.5772/58891
https://upright.pub/index.php/tmr/article/view/151
https://doi.org/10.3390/fi9040090
https://doi.org/10.1108/IR-07-2018-0149
https://doi.org/10.4028/www.scientific.net/AMM.536-537.607
https://doi.org/10.4028/www.scientific.net/AMM.859.67
https://doi.org/10.5772/51373
https://doi.org/10.18034/apjee.v9i2.753
https://upright.pub/index.php/tmr/article/view/149
https://doi.org/10.18034/abcjar.v11i2.757

