
ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 31

Integrating SQA into the Robotic Software

Development Lifecycle

Rahimoddin Mohammed

Software Engineer, Credit Risk, UBS, 1000 Harbor Blvd, Weehawken, NJ 07086, USA

Corresponding Contact:

Email: rahimoddinm501@gmail.com

Manuscript Received: 03 Feb 2023 - Accepted: 27 Mar 2023 - Published: 11 Apr 2023

ABSTRACT

Software Quality Assurance (SQA) is integrated into the robotic software
development lifecycle to improve robotic system dependability, safety, and
performance in this research. The main goals are finding gaps in existing SQA
procedures, presenting a specialized SQA integration architecture, and solving
robotics difficulties, including hardware-software Integration, real-time
processing, and machine learning validation; the research evaluates current
SQA methodologies and proposes changes using secondary data from the
literature, industry reports, and technical publications. Due to their intricate
interconnections, hardware-in-the-loop (HIL) testing, real-time performance
assessments, and automated Testing are crucial to the robotic system SQA. The
report also notes resource requirements for extensive testing and simulation
fidelity. Policy implications include standardizing testing techniques, investing
in new simulation technology, and establishing safety and compliance
regulations. The suggested paradigm addresses these difficulties to help
design more dependable and competent robotic systems, improving robotics
and its applications.

Keywords: Software Quality Assurance (SQA), Robotic Software, Development Lifecycle,
Automation, Testing Strategies, Software Reliability, Quality Management

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Attribution-NonCommercial (CC BY-NC) license lets others remix, tweak, and build upon work non-commercially, and
although the new works must also acknowledge & be non-commercial.

INTRODUCTION

Rapid advances in robotics technology have altered industry and healthcare, boosting
autonomous system capabilities. Robot software has gotten more complicated as robots
become more intelligent and essential to critical tasks. This transition highlights the need
for adequate robotic software development-specific software quality assurance (SQA)
techniques. SQA in robotic software development is no longer a recommendation but a
need for dependability, safety, and performance (Addimulam et al., 2020).

Robotic systems work in low-error conditions. Robotic software interacts directly with the
natural environment, demanding accuracy and durability considerably beyond typical
applications (Ying et al., 2022). In the worst cases, robotic system failures may cause

mailto:rahimoddinm501@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 32 Volume 12, No 1/2023 | ABCJAR

operational delays, financial loss, and human safety risks. Thus, robotic software quality is
crucial. However, SQA incorporation into robotic software development brings distinct
obstacles. Robotic systems need real-time processing, agility, and the capacity to perform
in uncertain contexts, so traditional SQA methods may fail to meet their objectives.
Hardware and software components work closely during robotic software development,
making it more iterative and interdisciplinary (Anumandla et al., 2020). Due to these
issues, conventional SQA methods must be rethought for robots.

This Integration requires adapting SQA approaches to robotic systems' hybrid nature,
which frequently combines software, hardware, and human interaction. Due to their
complexity, SQA methods must address software correctness, performance, and
interaction with the robot's physical components and operating environment (Deming et
al., 2021). Testing methodologies must examine how software upgrades may influence
robot mechanical components or how environmental changes affect system behavior.
Continuous Integration and Testing are other essential features of SQA in robotic software
development. Since robotic software development is iterative and components are often
updated and improved, continual SQA procedures guarantee quality (Mohammed et al.,
2017). This method detects faults early, lowers repair costs, and assures the product fulfills
safety and performance criteria. SQA is further complicated by robotic software's dynamic
nature, which may include machine learning, adaptive algorithms, and real-time decision-
making. Simulation-based Testing, hardware-in-the-loop Testing, and formal verification
are needed to ensure system quality (Fadziso et al., 2022). These methods validate robotic
system behavior in many contexts, assuring real-world robustness and dependability.
Developing dependable, safe, and high-performing robotic systems requires SQA in the
robotic software development lifecycle. SQA methods suited to robotic software will
become more critical as robotics advances. Solving difficulties and using sophisticated
testing methods may improve robotic system quality and ensure successful deployment in
critical applications across industries.

STATEMENT OF THE PROBLEM

Software quality assurance (SQA) approaches customized to the robotic software
development lifecycle are needed as robotic systems become more complicated and
deployed in various essential applications. Despite robotics and software engineering
breakthroughs, SQA approaches for robotic software development still need to be studied
(Karanam et al., 2018). Standard SQA methods must handle the complexity of robotic
systems, which combine software, hardware, and real-time processing in ways that vary
from standard software applications.

SQA integration into robotic software development is complex due to its hybrid and
dynamic character. SQA typically targets solitary software components or systems with
well-defined inputs and outputs (Kothapalli, 2019). Robotic systems interact with
hardware, function in authentic contexts, and adapt to changing situations, requiring SQA
methodologies to be rethought. Robotics need real-time performance, hardware-software
interfaces, and adaptive solid algorithms for machine learning and autonomous decision-
making. Current methods may need to meet these criteria.

This project will identify and assess SQA gaps in robotic software development and offer a
framework for integrating robotic system-specific SQA approaches. The research evaluates
current SQA techniques in robotics, explores innovative ways to improve software
reliability and performance, and develops guidelines or best practices that can be

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 33

seamlessly integrated into the robotic software development lifecycle. The project aims to
connect conventional SQA techniques with robotic software's changing needs.

This work might progress robotics by assuring excellent quality, safety, and performance
in robotic systems. Robots are becoming more common in healthcare, industry, and
autonomous cars, making trustworthy and resilient software essential. The robotic
software development lifecycle may benefit from SQA integration to increase system
dependability, failure risk, and user and operator safety. Moreover, customized SQA
approaches may spur innovation in robotic software engineering, laying the groundwork
for increasingly sophisticated and competent robots. This work will help robotics software
quality assurance become more dependable and successful by filling the research gap. This
innovation will improve robotic system performance and safety and encourage industry
acceptance and deployment of robotic technology, benefitting society.

METHODOLOGY OF THE STUDY

This secondary data-based analysis examines SQA incorporation into robotic software
development. A thorough literature study of SQA and robotic software development
academic publications, industry reports, and technical papers is conducted. Relevant,
credible, and recent sources guarantee an up-to-date grasp of current procedures and
practices. The study identifies gaps and obstacles in applying standard SQA
methodologies to robotic systems, evaluates current approaches, and evaluates potential
frameworks for incorporating SQA. Data is organized to show trends, methods, and
suggestions. This method synthesizes information and insights to improve SQA
procedures for robotic software development.

CURRENT SQA PRACTICES IN ROBOTICS DEVELOPMENT

Robotic systems need Software Quality Assurance (SQA) to work consistently and
securely in many applications. SQA procedures are used to ensure software quality
improves with robotics technology (Kothapalli, 2022). This chapter discusses robotic
software development SQA processes, including how conventional methods are modified
and when they fail.

Overview of SQA in Robotics

Traditional SQA uses testing and validation methods to ensure software accuracy,
performance, and dependability. These methods include unit, Integration, system, and
acceptability testing. These methods are modified for robots to meet software-hardware
interaction, real-time processing, and dynamic settings.

Unit testing and Verification: Unit testing, a core SQA approach, checks software
components and modules for functionality. It also verifies the functioning of robotic software
components such as sensor data processing algorithms, control logic, and communication
protocols. Robotics requires software-hardware interactions that typical unit testing may
only partially cover (Gresse von Wangenheim et al., 2013). Software components are
evaluated in a simulated environment to address this in robotic systems. This method helps
discover concerns about sensor data interpretation, algorithm performance, and
environmental response before the program is implemented on hardware.

Integration Testing and Hardware-in-the-Loop: Integration testing ensures software
parts operate together. Software components, including route planning algorithms, sensor

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 34 Volume 12, No 1/2023 | ABCJAR

drivers, and control systems, must work together for robotic systems. HIL testing, which
uses actual hardware and software simulations to assess software-physical component
interaction, is essential in this sector (Kumudha & Venkatesan, 2016). HIL testing lets
engineers test robotic systems in a controlled environment to see how software changes
affect hardware. This method helps detect concerns about real-time processing, sensor
integration, and actuator control. Despite its benefits, HIL testing is resource-intensive and
may only cover some operational circumstances, requiring additional Testing.

System Testing and Simulation: The complete robotic system is tested to verify it satisfies
specifications and functions as anticipated. In robotic software development, system
testing generally uses complex simulation methods to simulate a variety of circumstances
that may be difficult to duplicate in physical testing settings. Simulations may evaluate
robotic systems' reactions to complex navigation tasks, unanticipated environmental
changes, and dynamic human interactions. These simulations help evaluate software
algorithm resilience, system performance, and possible difficulties before deployment.
Physical Testing is needed to verify simulation findings, which may not precisely reflect
real-world situations (Wang et al., 2018).

Continuous Integration and Automated Testing: Robotic software development
increasingly uses CI and automated Testing to maintain quality and performance. CI
requires constantly merging code changes into a shared repository, and automated Testing
finds and fixes bugs early in Development (Kothapalli et al., 2021). Automated testing
scripts assess new features, conduct regression tests, and maintain functioning. CI and
automated testing speed up robotics development by delivering fast feedback on code
changes and decreasing bugs. Robotic software may be tested for functionality,
performance, and safety using automated Testing. Automated tests are helpful but must
be carefully built to cover a representative collection of cases and updated often.

Figure 1: Comparison of SQA Practices in Different Stages of Robotic Software
Development

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 35

X-Axis includes Unit Testing, Integration Testing, System Testing, and Continuous
Integration.

Y-Axis Shows each SQA practice's utilization or effectiveness at distinct development
lifecycle phases.

First Bar (Development Phase): Shows each SQA practice's utilization or effectiveness
percentage.

Second Bar (Testing Phase): Shows each SQA practice's utilization or effectiveness %.

The Development Phase uses unit testing at 80%, whereas the Testing Phase uses 75%.

Integration Testing is more common in Testing (70%) than Development (65%).

System Testing accounts for 80% of the Testing Phase, concentrating on system-level
validation.

Continuous Integration uses all stages equally, with a minor preference for Development
(55% vs. 60%).

Current Limitations and Areas for Improvement

While existing SQA procedures are robust for assuring robotic software quality, numerous
restrictions remain. Traditional testing methods may miss software-hardware interactions
and real-world factors. Robotic systems, especially those with machine learning and
autonomous decision-making, are dynamic and adaptable, making standard testing
methods difficult (Mohammed et al., 2017a).

Advanced SQA procedures, including real-time Testing, adaptive verification, and
complete simulation models, are needed to overcome these restrictions. These techniques
should address robotic systems' hardware integration, real-time processing restrictions,
and changeable surroundings. Current robotics SQA techniques ensure software quality
but must be improved to handle robotic software development difficulties. By adapting
these techniques to robotics' difficulties, the industry may increase robotic system
dependability, safety, and performance, enabling more sophisticated and capable
technologies (Deniz & Cakir, 2018).

CHALLENGES IN SQA FOR ROBOTIC SYSTEMS

Robotic systems' complex and hybrid nature makes integrating Software Quality Assurance
(SQA) into the robotic software development lifecycle difficult. Robotic systems use
hardware and software, work in dynamic surroundings, and have real-time processing and
adaptive behaviors (Mohammed et al., 2018). This chapter discusses the main issues of
software quality assurance in robotic systems and how they affect SQA procedures.

Complexity of Hardware-Software Integration

Complex software-hardware Integration is a significant SQA difficulty for robotic systems.
Robotic systems use sensors, actuators, and control units with software algorithms to
complete tasks. Tight hardware-software connection causes various issues:

 Testing Hardware Interactions: Hardware-in-the-loop (HIL) simulations are
needed to test software-hardware interactions. Resource-intensive setups may not
cover all system combinations and ambient circumstances (Gómez-Sanz & Fuentes-
Fernández, 2015).

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 36 Volume 12, No 1/2023 | ABCJAR

 Variability in Hardware Components: Hardware component variability, such as
sensor calibration or actuator performance, may cause software behavior to vary.
Due to this diversity, Testing and quality indicators are difficult to establish.

 Physical Constraints: Hardware restrictions, such as computational limits or wear
and tear, may impact software performance. Advanced Testing and validation are
needed to ensure software works reliably under these restrictions.

Real-Time Processing and Determinism

Real-time robotic systems need software to evaluate sensor input and make choices
quickly. Real-time requirements provide various SQA challenges:

 Timing Constraints: Real-time systems must fulfill severe timing limitations to
respond quickly to environmental changes. Real-time performance testing requires
assessing the system's capacity to meet deadlines under different situations, which
is difficult to replicate and evaluate (Mohan & Shrimali, 2017).

 Concurrency Issues: Robotic systems often use concurrent activities like sensor data
gathering and control instructions. Implementing testing to ensure these processes
interact appropriately and do not generate race situations or deadlocks is tough.

 Predictability and Stability: Robotic systems must operate reliably and stay stable
under varied situations (Mohammed & Pasam, 2020). Real-time Testing must
account for timing difficulties and unexpected inputs that might cause instability.

Adaptability and Machine Learning Integration

Modern robotic systems use machine learning algorithms to adapt and increase
performance. SQA faces new hurdles with this Integration:

 Validation of Adaptive Algorithms: Training data and environmental interactions
may change machine learning models, making validation difficult. Specialized
testing methods are needed to ensure these models work consistently and do not
behave unexpectedly.

 Data-Driven Behavior: The data used to train machine learning algorithms affects
their behavior. Testing must account for training data fluctuations and verify
system performance in many circumstances, including edge cases.

 Uncertainty and Robustness: Machine learning models may impair system performance
due to uncertainty. Testing must assess how effectively the system manages uncertain or
noisy data and maintains resilience to different inputs (Mohammed, 2021).

Simulation vs. Real-World Testing

Simulations are used to assess robotic systems and software performance. However,
simulations have challenges:

 Accuracy of Simulations: Effective simulations must properly mimic real-world
situations. Simulations and real situations might differ, skewing system
performance and reliability estimates.

 Coverage of Scenarios: The wide variety of variables a robot may experience makes
it difficult to simulate every scenario. Careful simulation design may create testing
gaps despite covering a realistic range of cases.

 Transition to Physical Testing: Physical Testing must confirm simulation results.
This transition may disclose flaws not seen in simulations, requiring repeated
changes and Testing.

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 37

Safety and Compliance

Robotic systems in sensitive or hazardous situations must be safe and compliant with
industry norms. The main obstacles are:

 Regulatory Standards: Safety and regulatory regulations are frequently strict in
robotics. Software must be documented, tested, and certified to fulfill these criteria,
which might take time.

 Error Handling and Fault Tolerance: Robotic systems must elegantly handle and
tolerate mistakes. Testing for faults and ensuring the system reacts to failures is
crucial to safety but challenging.

 Human-Robot Interaction: Safety issues for robots interacting with people include
ensuring the system operates reliably and safely in human situations. Testing must
consider several human interactions and dangers.

The sophisticated combination of hardware, software, and real-time processing makes the
robotic system SQA difficult. Advanced Testing, simulation, validation, and safety and
compliance are needed to address these difficulties (Mohammed, 2022). These issues must
be overcome to ensure robotic system dependability, performance, and safety in varied
applications as they progress.

Table 1: Comparison of SQA Practices for Different Robotic Systems

Robotic

System Type

Primary SQA

Challenges

SQA Practices Used Effectiveness

Industrial
Robots

Hardware-Software
Integration, Safety

HIL Testing, Safety-
Critical Testing

High effectiveness in
Integration and safety.

Service
Robots

Real-Time Processing,
Machine Learning

Real-Time Performance
Testing, ML Validation

Effective for performance
and adaptive behavior.

Autonomous
Vehicles

Real-Time
Processing, Safety,
Compliance

HIL Testing, Advanced
Simulations, Safety
Testing

Comprehensive coverage
of performance and
safety.

Robotic System Type Classifies robotic systems as Industrial, Service, or Autonomous
Vehicles. Each category has various operating needs and problems.

The critical Software Quality Assurance difficulties of each robotic system are listed.
Industrial Robots prioritize Hardware-Software Integration and Safety, whereas Service
Robots prioritize Real-Time Processing and Machine Learning Adaptability.

SQA Methods Specifies SQA techniques for each robotic system's main difficulties.
Examples include HIL Testing, Real-Time Performance Testing, and Machine Learning
Validation.

Effectiveness: Assesses how well SQA techniques solve robotic system issues. Hardware-
in-the-loop (HIL) Testing helps integrate software with hardware for Industrial Robots
and Autonomous Vehicles. At the same time, Real-Time Performance Testing ensures
Service Robot responsiveness (Rana et al., 2019).

Table 1 compares how different SQA practices are used in robotic systems and their
efficacy in resolving distinct difficulties. It helps stakeholders understand how SQA efforts
match the demands of each robotic system type and optimize SQA techniques for system
performance and dependability.

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 38 Volume 12, No 1/2023 | ABCJAR

PROPOSED FRAMEWORK FOR SQA INTEGRATION

A comprehensive and specialized framework is needed to integrate Software Quality
Assurance (SQA) into robotic software development. To improve robotic system
dependability, safety, and performance, this framework adapts and extends existing SQA
approaches to robotics' particular needs (Nizamuddin et al., 2019). Using different quality
assurance levels, the proposed framework tests and validates software and hardware
components from Development to deployment.

Figure 2: SQA Framework Resource Allocation

The Figure 2 pie chart shows how the robotic system SQA framework components receive
resources or effort. It shows which parts receive the most excellent attention and resources.
Real-Time Performance Testing receives 30% of resources to ensure system responsiveness
and performance under real-time restrictions. Continuous Integration accounts for 25%,
emphasizing its relevance in code quality and consistency throughout Development.
Hardware-Software Co-Design gets 20% for its crucial role in matching software to
hardware restrictions. Safety Assurance receives 15%, demonstrating an emphasis on
safety and regulation. Automated Testing supports continuing Testing and validation
with the remaining 10%.

The Holistic Testing Approach

Hardware-Software Co-Design: Hardware-software co-design, where hardware and
software are designed and tested together, is essential to the framework. This method
guarantees that hardware restrictions are considered while developing software. Co-
design involves:

 Early simulation and prototyping: Modeling hardware-software interactions early
in design. This helps identify faults before building prototypes, decreasing
development time and cost (Stetter & Simundsson, 2015).

 Iterative Testing: Testing and refining hardware and software components. A
cohesive system is achieved by continual feedback loops that resolve errors in any
area in real-time.

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 39

Integrated Testing Environments: Integrating hardware and software simulations to
assess system performance realistically. This involves:

 Hardware-in-the-Loop (HIL) Testing: Simulating software-hardware interactions
in a controlled yet realistic environment. HIL testing detects integration flaws and
verifies real-time performance.

 Simulated Environments: Using powerful simulation platforms, testing software
behavior in diverse environmental settings, including edge situations that may be
difficult to duplicate in Physical Testing.

Improved Testing Methodologies

Real-Time Performance Testing: Real-time performance testing is stressed in the
framework since robotic systems need it. This includes:

 Timing Analysis: This ensures the system fulfills deadlines and completes tasks on
time. Real-time capabilities are validated using latency and jitter tools.

 Concurrency Testing: Testing for race situations and deadlocks to guarantee
smooth and dependable execution of parallel processes.

Machine Learning Validation: The framework provides methods for verifying adaptive
behaviors in machine learning-based robotic systems:

 Data Validation: Data validation ensures that machine learning models work
consistently across situations by testing the system with varied datasets. This entails
testing how effectively models handle noisy or missing data and generalize to new data.

 Behavioral Analysis: Real-time behavioral analysis of machine learning algorithms
to discover and mitigate undesired effects. This involves checking for abnormalities
and maintaining system performance.

Continuous Integration and Testing

Continuous Integration: Implementing a comprehensive robotics-specific Continuous
Integration (CI) approach, including:

 Automated Build and Test: Automate build and Testing to find bugs early and often.
This requires functional, performance, and regression automated testing frameworks.

 Version Control: Version control systems manage software and hardware
configuration changes and ensure all components are integrated and verified.

Automated and Adaptive Testing: Using automated and adaptive Testing to support
iterative Development:

Automation Regression Testing involves creating automated regression tests to ensure
new changes do not damage current functionality. This sustains software stability and
dependability during Development (Ahmed, 2015).

Adaptive Test Scripts: Creating adaptive test scripts that respond to changes in the system's
configuration or behavior allows for flexible and efficient Testing as the system develops.

Safety and Compliance

Safety Assurance: Making safety a priority in SQA:

 Safety-Critical Testing: Implementing safety-critical testing processes ensures the
system fulfills safety requirements and reacts to fault circumstances (Rodriguez et

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 40 Volume 12, No 1/2023 | ABCJAR

al., 2019). Test for failure modes and ensure the system can gracefully recover from
faults.

 Compliance Verification: Regular evaluations and audits verify that industry
standards and regulations are met. This requires safety, quality documentation, and
certifications (Kazadzis et al., 2018).

People-robot Interaction Testing: Addressing human-robot interaction issues:

 User Interaction Simulation: Simulating robot-human interactions to assure system
predictability and safety. This involves ergonomic Testing and robot response to
human inputs.

 Behavioral Analysis: Assessing the robot's response to human interactions to
uncover safety hazards and enhance user experience.

The suggested architecture for incorporating SQA into the robotic software development
lifecycle addresses robotic system issues comprehensively. The framework ensures robotic
systems are dependable, safe, and effective in real-world settings by using comprehensive
Testing, upgraded methodology, Continuous Integration, and strict safety and compliance
requirements (Ying et al., 2018). This organized method improves robotic software and
helps produce more reliable robotic technology.

MAJOR FINDINGS

Integrating Software Quality Assurance (SQA) into the robotic software development
lifecycle uncovers various crucial insights and discoveries that illustrate both the
difficulties and improvements in guaranteeing robotic system dependability and
performance. A complete examination of SQA procedures, difficulties, and the suggested
reform framework yielded these conclusions.

The complexity of Hardware-Software Integration: Integrating software and hardware in
robotic systems is very complicated. SQA approaches frequently concentrate only
on software components, whereas robotic systems need a holistic approach that
tackles software-hardware interactions. To overcome this complexity, hardware-
software co-design, and HIL testing became essential. These approaches help
identify integration problems early and align software and hardware, improving
system stability and performance.

Challenges with Real-Time Processing: Real-time processing is essential for robotic
systems. Hence, software must be rigorously tested to fulfill timing limitations.
Results show that real-time performance testing, including timing analysis and
concurrency testing, must ensure robotic systems meet deadlines and manage
concurrent tasks. Traditional testing methods fail to capture real-time performance
difficulties; therefore, timing limitations and concurrency issues must be addressed.

Machine Learning and Adaptability Issues: Robotic machine-learning algorithms
complicate SQA. Our main observation is that adaptive algorithms need specific
validation methods. Data validation and behavioral analysis are essential for
machine learning models to operate consistently in varied contexts and manage
unclear or noisy data. Machine learning algorithms' flexibility demands constant
monitoring and testing to avoid undesired behavior and maintain reliability.

Importance of Continuous Integration and Automated Testing: The research emphasizes
the importance of Continuous Integration (CI) and automated Testing in software

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 41

quality throughout Development. Early and frequent problem detection requires CI
approaches like automated build and test procedures. Automated regression testing
and adaptive test scripts help manage iterative changes and ensure new features
don't break old functionality. These approaches expedite Development and increase
software stability and dependability.

Safety and Compliance Considerations: SQA in robots must ensure safety and
compliance. Primary results emphasize safety-critical Testing and compliance
verification to fulfill industry and regulatory standards. Safety-critical testing
techniques ensure robotic systems can manage faults and failures. Robotic systems
must comply with appropriate standards and laws to be safe for use in sensitive
areas or applications involving humans.

Human-Robot Interaction Challenges: The SQA architecture must handle particular
human-robot interaction difficulties. Simulations of human interactions and
behavioral analysis are essential for safe and successful robotic system operation in
human-interactive contexts. Ergonomic Testing and predictable behavior in
response to user inputs improve user experience and reduce safety hazards.

The key conclusions from incorporating SQA into the robotic software development
lifecycle underline the necessity for thorough and adaptive quality assurance. Advanced
Testing and Continuous Integration are needed due to hardware-software interaction,
real-time processing, and machine-learning algorithm problems. Safety, compliance, and
human-robot interactions emphasize the need for a robust SQA framework. Addressing
these results may lead to more dependable, safe, and high-performing robotic systems,
advancing robotics technology and applications.

LIMITATIONS AND POLICY IMPLICATIONS

SQA in robotic software development has various drawbacks. First, Hardware-in-the-Loop
(HIL) testing and real-time performance reviews might strain development budgets and
timeframes. Test findings may be unreliable because simulations cannot accurately depict
complicated real-world settings. Machine learning algorithms' adaptive behaviors make
Testing harder since they need ongoing monitoring and validation to maintain performance.

Standards-based robotic system testing techniques and frameworks should be promoted
to overcome these constraints. Investing in modern simulation and real-time testing tools
should improve SQA accuracy and efficiency. Additionally, regulatory agencies should
provide explicit robotics safety and compliance requirements to ensure that software and
hardware satisfy high quality and safety standards.

CONCLUSION

Incorporating software quality assurance (SQA) into the robotic software development
lifecycle is revolutionary for improving robotic systems' dependability, security, and
efficiency. This research emphasizes the intricacies and distinct obstacles encountered in
applying conventional SQA approaches to robots, including the complicated interplay
between hardware and software, the need for real-time processing, and the Integration of
machine learning algorithms. The main conclusions show that considerable modifications
to typical SQA procedures are required to meet the unique requirements of robotic
systems. Overcoming these obstacles requires Hardware-in-the-Loop (HIL) testing, real-
time performance assessments, and specific machine-learning validation methods.

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 42 Volume 12, No 1/2023 | ABCJAR

Automated Testing and Continuous Integration (CI) are essential for preserving software
quality throughout Development.

Despite these developments, several drawbacks, such as the substantial resource
requirements for thorough testing and simulation accuracy, still need to be addressed.
Standardized testing procedures, financial investments in cutting-edge simulation
technology, and unambiguous legal requirements for compliance and safety are all
necessary to lessen these problems.

In conclusion, a comprehensive and flexible strategy is needed to successfully include
SQA in the robotic software development lifecycle. Developers may enhance the
robustness and reliability of robotic systems, progressing the area of robotics and
expanding its applications across diverse sectors by tackling the stated difficulties and
using the provided framework. This connection helps create more competent and
dependable robots and makes their deployment in real-world situations safer and more
efficient.

REFERENCES

Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M.
A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image
Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research,
7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687

Ahmed, Z. (2015). Essential Design Modeling for Scientific Software Development. PeerJ
PrePrints. https://doi.org/10.7287/peerj.preprints.1423v1

Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020).
Unveiling the Influence of Artificial Intelligence on Resource Management and
Sustainable Development: A Comprehensive Investigation. Technology & Management
Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145

Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R.
V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration
with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-
88. https://doi.org/10.18034/apjee.v8i2.762

Deniz, C., Cakir, M. (2018). In-line Stereo-camera Assisted Robotic Spot Welding Quality
Control System. The Industrial Robot, 45(1), 54-63. https://doi.org/10.1108/IR-06-
2017-0117

Fadziso, T., Mohammed, R., Kothapalli, K. R. V., Mohammed, M. A., Karanam, R. K. (2022).
Deep Learning Approaches for Signal and Image Processing: State-of-the-Art and
Future Directions. Silicon Valley Tech Review, 1(1), 14-34.

Gómez-Sanz, J. J., Fuentes-Fernández, R. (2015). Understanding Agent-Oriented Software
Engineering Methodologies. The Knowledge Engineering Review, suppl. Challenges in Agent-
Oriented Software Engineering, 30(4), 375-393. https://doi.org/10.1017/S0269888915000053

Gresse von Wangenheim, C., von Wangenheim, A., McCaffery, F., Hauck, J. C.
R., Buglione, L. (2013). Tailoring Software Process Capability/maturity Models for
the Health Domain. Health and Technology, 3(1), 11-28.
https://doi.org/10.1007/s12553-013-0038-7

https://mjmbr.my/index.php/mjmbr/article/view/687
https://doi.org/10.7287/peerj.preprints.1423v1
https://upright.pub/index.php/tmr/article/view/145
https://doi.org/10.18034/apjee.v8i2.762
https://doi.org/10.1108/IR-06-2017-0117
https://doi.org/10.1108/IR-06-2017-0117
https://siliconvalleytechreview.weebly.com/
https://doi.org/10.1017/S0269888915000053
https://doi.org/10.1007/s12553-013-0038-7

ABC Journal of Advanced Research, Volume 12, No 1 (2023) ISSN 2304-2621(p); 2312-203X (e)

Copyright © CC-BY-NC, i-Proclaim | ABCJAR Page 43

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R.,
Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural
Networks in Algorithmic Trading for Financial Markets. Asian Accounting and
Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kazadzis, S., Kouremeti, N., Nyeki, S., Gröbner, J., Wehrli, C. (2018). The World Optical
Depth Research and Calibration Center (WORCC) Quality Assurance and Quality
Control of GAW-PFR AOD Measurements. Geoscientific Instrumentation, Methods and
Data Systems, 7(1), 39-53. https://doi.org/10.5194/gi-7-39-2018

Kothapalli, K. R. V. (2019). Enhancing DevOps with Azure Cloud Continuous Integration
and Deployment Solutions. Engineering International, 7(2), 179-192.

Kothapalli, K. R. V. (2022). Exploring the Impact of Digital Transformation on Business
Operations and Customer Experience. Global Disclosure of Economics and Business,
11(2), 103-114. https://doi.org/10.18034/gdeb.v11i2.760

Kothapalli, K. R. V., Tejani, J. G., Rajani Pydipalli, R. (2021). Artificial Intelligence for
Microbial Rubber Modification: Bridging IT and Biotechnology. Journal of Fareast
International University, 4(1), 7-16.

Kumudha, P., Venkatesan, R. (2016). Cost-Sensitive Radial Basis Function Neural Network
Classifier for Software Defect Prediction. The Scientific World Journal, 2016.
https://doi.org/10.1155/2016/2401496

Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., &
Richardson, N. (2017). Machine Learning-Based Real-Time Fraud Detection in
Financial Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76.
https://4ajournal.com/article/view/93

Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality
Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal
of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755

Mohammed, R. & Pasam, P. (2020). Autonomous Drones for Advanced Surveillance and
Security Applications in the USA. NEXG AI Review of America, 1(1), 32-53.

Mohammed, R. (2021). Code Refactoring Strategies for Enhancing Robotics Software
Maintenance. International Journal of Reciprocal Symmetry and Theoretical Physics, 8,
41-50. https://upright.pub/index.php/ijrstp/article/view/152

Mohammed, R. (2022). Artificial Intelligence-Driven Robotics for Autonomous Vehicle
Navigation and Safety. NEXG AI Review of America, 3(1), 21-47.

Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P.,
& Natakam, V. M. (2017). Optimizing Web Performance: Front End Development
Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical
Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142

Mohan, M., Shrimali, T. (2017). Hybrid Data Approach For Selecting Effective Test Cases
During The Regression Testing. International Journal on Smart Sensing and Intelligent
Systems, 10(5), 1-24. https://doi.org/10.21307/ijssis-2017-233

Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., &
Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout

https://4ajournal.com/article/view/95
https://doi.org/10.5194/gi-7-39-2018
https://doi.org/10.18034/gdeb.v11i2.760
https://doi.org/10.1155/2016/2401496
https://4ajournal.com/article/view/93
https://doi.org/10.18034/abcjar.v7i2.755
https://upright.pub/index.php/ijrstp/article/view/152
https://upright.pub/index.php/ijrstp/article/view/142
https://doi.org/10.21307/ijssis-2017-233

Mohammed: Integrating SQA into the Robotic Software Development Lifecycle (31-44)

Page 44 Volume 12, No 1/2023 | ABCJAR

Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity,
Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751

Rana, S., Bennouna, J., Jebaseelan Samuel, E. J., Gutierrez, A. N. (2019). Development and
Long-term Stability of a Comprehensive Daily QA Program for a Modern Pencil
Beam Scanning (PBS) Proton Therapy Delivery System. Journal of Applied Clinical
Medical Physics, 20(4), 29-44. https://doi.org/10.1002/acm2.12556

Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C.
R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning
Technology with Business Goals. Technology & Management Review, 4, 49-63.
https://upright.pub/index.php/tmr/article/view/151

Stetter, R., Simundsson, A. (2015). Control and Diagnosis in Integrated Product
Development - Observations during the Development of an AGV. Journal of Physics:
Conference Series, 659(1). https://doi.org/10.1088/1742-6596/659/1/012056

Wang, X., Yan, H., Li, J. (2018). An Improved Supervised Learning Defect Prediction
Model Based on Cat Swarm Algorithm. Journal of Physics: Conference Series, 1087(2).
https://doi.org/10.1088/1742-6596/1087/2/022005

Ying, D., Kothapalli, K. R. V., Mohammed, M. A., Mohammed, R., & Pasam, P. (2018).
Building Secure and Scalable Applications on Azure Cloud: Design Principles and
Architectures. Technology & Management Review, 3, 63-76.
https://upright.pub/index.php/tmr/article/view/149

Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends
in Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research,
11(2), 115-126. https://doi.org/10.18034/abcjar.v11i2.757

--0--

https://doi.org/10.18034/ajhal.v6i2.751
https://doi.org/10.1002/acm2.12556
https://upright.pub/index.php/tmr/article/view/151
https://doi.org/10.1088/1742-6596/659/1/012056
https://doi.org/10.1088/1742-6596/1087/2/022005
https://upright.pub/index.php/tmr/article/view/149
https://doi.org/10.18034/abcjar.v11i2.757

