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ABSTRACT 

In machine learning, the transition from hand-designed 
features to learnt features has been a huge success. 
Regardless, optimization methods are still created by 
hand. In this study, we illustrate how an optimization 

method's design can be recast as a learning problem, allowing the algorithm to 
automatically learn to exploit structure in the problems of interest. On the tasks for which 
they are taught, our learnt algorithms, implemented by LSTMs, beat generic, hand-
designed competitors, and they also adapt well to other challenges with comparable 
structure. We show this on a variety of tasks, including simple convex problems, neural 
network training, and visual styling with neural art. 
 
Keywords: Gradient decent, Long Short Term Memory (LSTM), Gauss-Newton matrix, 
Machine learning, Recurrent neural network (RNN) 
 

INTRODUCTION 

The problem of maximizing an objective function, 𝑓(𝜃)  defined across some domain 𝜃 ∈
 ⊖  is frequently presented in machine learning problems. In this situation, the purpose is 
to identify the minimizer 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈ ⊖ 𝑓(𝜃). While any method capable of reducing 

this objective function can be used, for differentiable functions, the conventional approach 
is some type of gradient descent, which results in a series of updates. 

𝜃𝑡+1 =  𝜃𝑡− 𝛼𝑡  ∇ 𝑓(𝜃𝑡) 

However, the performance of vanilla gradient descent is limited since it only uses 
gradients and ignores second-order information. Traditional optimization algorithms 
rectify this behavior by rescaling the gradient step using curvature information, usually 
via the Hessian matrix of second-order partial derivatives, though other options such as 
the extended Gauss-Newton matrix or Fisher information matrix are also viable. 

Much of today's optimization research is focused on developing update rules that are 
customized to certain classes of issues, with the types of problems that are of interest 
varying among research communities. For example, optimization methods specialized for 
high-dimensional, non-convex optimization problems have proliferated in the deep 
learning community. Momentum (Nesterov, 1983, Tseng, 1998), Rprop (Riedmiller and 

Gradient Descent is a Technique for Learning 

to Learn 
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Braun, 1993), Adagrad (Duchi et al., 2011), RMSprop (Tieleman and Hinton, 2012), and 
ADAM (Kingma and Ba, 2015) are only a few of them. When the structure of the 
optimization problem is known, more targeted strategies can be used (Martens and 
Grosse, 2015). Communities that prioritize sparsity, on the other hand, embrace 
completely different techniques (Donoho, 2006, Bach et al., 2012; Ganapathy, 2016). This is 
especially true in combinatorial optimization, where relaxations are frequently employed 
(Nemhauser and Wolsey, 1988). 

This optimizer design industry enables various communities to develop optimization 
methods that take advantage of structure in their issues of interest at the risk of potentially 
poor performance on problems outside of that scope. 

Furthermore, the No Free Lunch Theorems for Optimization (Wolpert and Macready, 
1997) indicate that no algorithm can outperform a random strategy in expectation in 
combinatorial optimization. This shows that narrowing one's focus to a certain problem 
category is the only way to increase overall performance. 

Objective of the Study 

In this article, we propose to replace hand-designed update rules with a learnt update 
rule, which we refer to as the optimizer 𝑔 and which has its own set of parameters 𝜙. As a 
result, the optimize 𝑓  of the form is updated. In what follows, we will use a recurrent 
neural network (RNN) to explicitly describe the update rule g, which keeps its own state 
and so dynamically updates as a function of its iterates: 

𝜃𝑡+1 =  𝜃𝑡+𝑔𝑡 (∇ 𝑓(𝜃𝑡), 𝜙)  

LITERATURE REVIEW 

Transfer learning and generalization 

Ganapathy & Neogy (2017) create a method for building a learning algorithm that excels at 
a specific class of optimization problems. The ability to identify the class of problems we 
are interested in by casting algorithm design as a learning problem allows us to specify the 
class of problems we are interested in through example problem cases. This is in contrast 
to the traditional strategy of analyzing the features of intriguing problems and then hand-
designing learning algorithms based on these discoveries (Bynagari, 2015). 

In this context, it is instructive to analyze the notion of generalization. We have a specific 
function of interest in conventional statistical learning, and its behavior is constrained by a 
data collection of example function evaluations. We provide a set of inductive biases about 
how we think the function of interest should act at locations we haven't observed when 
picking a model, and generalization refers to the ability to anticipate the behavior of the 
target function at novel positions. Because the examples in our situation are themselves 
problem instances, generalization refers to the ability to transfer information between 
difficulties. Transfer learning is the term for this reusing of issue structure, and it is 
frequently addressed as a separate discipline. 

However, if we look at the problem of transfer learning from a meta-learning viewpoint, 
we may see it as a problem of generalization, which is far well-studied in the machine 
learning community (Bynagari, 2016; Vadlamudi, 2015). 

We may rely on deep networks' ability to generalize to new cases by learning intriguing 
sub-structures, which is one of the major success stories of deep learning. We hope to use 
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this generalization power in this paper, but also to extend it beyond simple supervised 
learning to the more general scenario of optimization. 

A brief history and related work 

Thrun and Pratt (1998) buttress the idea of using learning to learn or meta-learning to 
acquire knowledge or inductive biases has a long history. Lake et al. (2016) have lately 
made a strong case for its usefulness as a building element in artificial intelligence. Santoro 
et al. (2016) view multi-task learning as generalization, although unlike us, they train a 
base learner directly rather than via a training algorithm. In general, these concepts entail 
learning on two time scales: quick learning inside tasks and more slowly, Meta learning 
across a variety of tasks (Bynagari, 2017). 

Schmidhuber (1992, 1993) which builds on Schmidhuber (1987) and analyzes networks 
that can adjust their own weights, is perhaps the most general method to meta-learning. 
End-to-end differentiability of such a system allows both the network and the learning 
algorithm to be taught using gradient descent with few constraints. This universality, 
however, comes at the cost of making the learning rules extremely difficult to train. 
Instead of gradient descent, Schmidhuber et al. (1997) employ the Success Story Algorithm 
to adjust their search strategy; a similar technique was recently taken by Daniel et al. 
(2016), who used reinforcement learning to train a controller for picking step-sizes. 

Bengio et al. (1990, 1995) propose utilizing simple parametric principles to learn updates 
that avoid back-propagation. Bengio et al (1990, 1995) techniques could be described as 
learning to learn without gradient descent using gradient descent, which is relevant to the 
topic of this paper. Runarsson and Jonsson (2000) expand on this work by using a neural 
network instead of a simple rule. Fixed-weight recurrent neural networks can exhibit 
dynamic behavior without modifying their network weights, according to Cotter and 
Conwell (1990) and later Vadlamudi (2016). This has also been demonstrated in the 
context of filtering (Feldkamp and Puskorius, 1998), which is linked to basic multi-
timescale optimizers (Sutton, 1992, Schraudolph, 1999). 

Finally, the work of Younger et al. (2001) and Hochreiter et al. (2001) combines these 
disparate lines of inquiry by allowing backpropagation output from one network to input 
into an extra learning network, with both networks being trained simultaneously. Our 
meta-learning technique improves on previous work by altering the optimizer's network 
design in order to extend this approach to bigger neural-network optimization challenges. 

Learning to learn with recurrent neural networks 

We look at explicitly parameterizing the optimizer in this paper. As a result, in a minor 
case of notation misuse, The final optimizee parameters 𝜃∗(𝑓, 𝜙)  will be written as a 
function of the optimizer parameters 𝑓  and the specific function in question Then we can 
ask, "What does it mean for an optimizer to be?" good? We will write the predicted loss as 
given a distribution of functions 𝑓. 

ℒ(𝜙) =  𝔼𝑓  [𝑓 (𝜃∗(𝑓, 𝜙))] 

As previously stated, the update steps 𝑔𝑡 will be the output of a recurrent neural network 
m, parameterized by 𝜙, and whose state will be clearly denoted with ℎ𝑡. Next, whereas the 
objective function just depends on the final parameter value, having an objective that 
depends on the entire optimization trajectory, for some horizon T, will be useful for 
training the optimizer. 
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ℒ (𝜙) =  𝔼𝑓 [∑ Ψ𝑡 𝑓(𝜃𝑡)

𝑇

𝑡=1

]  

Where 𝜃𝑡+1 =  𝜃𝑡 +  𝑔𝑡,  [
𝑔𝑡

ℎ𝑡+1
] = 𝑚(∇t, ℎ𝑡, 𝜙) 

The notation ∇𝑡=  ∇𝜃𝑓(𝜃𝑡) is used to represent the arbitrary weights associated with each 

time-step. When wt = 1[t = T], this formulation is equivalent to ℒ(𝜙) =  𝔼𝑓  [𝑓 (𝜃∗(𝑓, 𝜙))], 

although time-step is explained why having other weights can be advantageous later. 

Using gradient descent on 𝜙., we can reduce the value of ℒ(𝜙). By choosing a random 
function 𝑓 and applying backpropagation to the computational graph in Figure 1, the 
gradient estimate 𝜕ℒ(𝜙)/𝜕𝜙 can be obtained. Gradients are allowed to flow along the solid 
edges of the graph, but they are not allowed to flow along the dashed edges. Ignoring 
gradients along the dashed edges entails assuming that the optimizee's gradients are 

independent of the optimizer parameters, i.e. 
𝜕∇𝑡

𝜕𝜙
= 0. We can skip computing the second 

derivatives of 𝑓 because of this assumption. 

When we look at the gradient in ℒ (𝜙) =  𝔼𝑓[∑ Ψ𝑡 𝑓(𝜃𝑡)𝑇
𝑡=1 ] , we observe that it is non-zero 

only for terms where 𝑤𝑡  ≠ 0. The gradients of trajectory prefixes are 0 if we choose wt = 
1[t = T] to match the original issue, and only the last optimization step gives information 
for training the optimizer. Backpropagation through Time (BPTT) is rendered ineffective 
as a result of this. The solution is to relax the target so that wt > 0 at intermediate locations 
along the journey. This modifies the goal function yet allows us to train the optimizer on 
partial paths. For the sake of simplicity, wt = 1 for every 𝑡 in all of our tests. 

 
Figure 1: Computational graph used for computing the gradient of the optimizer 

Coordinate wise LSTM optimizer 

One of the difficulties in using RNNs in our situation is that we need to be able to optimize 
tens of thousands of parameters. It is not possible to optimize at this scale with a fully 
linked RNN since it would require a large hidden state and a large number of parameters. 
To get around this problem, we'll utilize an optimizer called m, which works coordinate 
wise on the parameters of the objective function, similar to RMSprop and ADAM. This 
coordinate wise network architecture enables us to define the optimizer with a very small 
network that only looks at a single coordinate and share optimizer parameters across 
different optimize parameters (Bynagari, 2014).  
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Separate activations for each goal function parameter are used to achieve different 
behavior on each coordinate. This arrangement has the wonderful effect of making the 
optimizer invariant to the order of parameters in the network, because the same update 
rule is applied independently on each coordinate, in addition to allowing us to utilize a 
small network for this optimizer. A two-layer Long Short Term Memory (LSTM) network 
is used (Hochreiter and Schmidhuber, 1997) with the now-standard forget gate design to 
implement the update rule for each coordinate. The network receives the optimize 
gradient for a single coordinate as well as the previous hidden state as inputs and returns 
the update for the corresponding optimize parameter as output (Ganapathy, 2015). This 
architecture, seen in Figure 2, will be referred to as an LSTM optimizer. 

 
Figure 2: One step of an LSTM optimizer 

Preprocessing and post processing 

The magnitudes of optimizer inputs and outputs vary greatly depending on the type of 
function being optimized, although neural networks typically perform well only with 
inputs and outputs that are neither too little nor too large. In reality, rescaling an LSTM 
optimizer's inputs and outputs with appropriate constants (shared across all time steps 
and functions f) is enough to avoid this problem. In Appendix A, we offer a new strategy 
for preparing optimizer inputs that is more robust and yields somewhat better results. 

METHODS 

The trained optimizers in all of the studies use two-layer LSTMs with 20 hidden units in 
each layer. As mentioned in Section 2, each optimizer is trained by minimizing ℒ (𝜙) =
 𝔼𝑓[∑ Ψ𝑡 𝑓(𝜃𝑡)𝑇

𝑡=1 ] using truncated BPTT. The minimization is done with ADAM and a 

learning rate determined by a random search. In order to avoid overfitting the optimizer, 
we employ early halting when training it. We freeze the optimizer parameters and 
measure its performance after each epoch (a defined number of learning steps). We choose 
the best optimizer (based on the final validation loss) and present its average performance 
on a set of randomly selected test problems. Our learned optimizers are compared to 
conventional Deep Learning optimizers such as SGD, RMSprop, ADAM, and Nesterov's 
accelerated gradient (NAG). We tweaked the learning rate for each of these optimizers and 
each problem, and reported results with the rate that gave the best final error for each 
problem. We utilize the default settings from Torch7's optim package when an optimizer 
contains more parameters than just a learning rate (decay coefficients for ADAM). All 
optimize parameters' initial values were drawn from an IID Gaussian distribution. 

QUADRATIC FUNCTIONS 

We examine training an optimizer on a basic class of synthetic 10-dimensional quadratic 
functions in this experiment. We focus on minimizing functions of the type for various 
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10x10 matrices W and 10-dimensional vectors y, the elements of which are taken from an 
IID Gaussian distribution. Optimizers were taught by optimizing random functions from 
this family and then tested on new samples from the same distribution (Ganapathy, 2017). 
Each function was made to be 100 percent efficient. The trained optimizers were unrolled 
for 20 steps, and the trained optimizers were unrolled for 20 steps. We didn't utilize any 
kind of preparation, and post processing. 

𝑓(𝜃) =  ‖𝑊𝜃 − 𝑦‖2
2

 

The left plot of Figure 3 shows learning curves for many optimizers, averaged over 
numerous functions. Each curve represents the average performance of one optimization 
procedure across multiple test functions; the solid curve represents learnt optimizer 
performance, while the dashed curves represent typical baseline optimizer performance. 
In this case, it is evident that the learnt optimizers outperform the baselines significantly. 

Training a small neural network on MNIST 

We investigate whether trainable optimizers can learn to optimize a tiny neural network 
on MNIST, as well as how the taught optimizers generalize to functions other than those 
on which they were trained. To do this, we train the optimizer to optimize a base network 
and then test a variety of network architecture and training technique changes. 

We investigate whether trainable optimizers can learn to optimize a tiny neural network 
on MNIST, as well as how taught optimizers generalize to functions other than those on 
which they were trained. To do this, we train the optimizer to optimize a base network 
and then test a variety of network architecture and training technique adjustments. 

The cross entropy of a tiny MLP with parameters is the objective function 𝑓(𝜃) in this case. 

The gradients 𝜕𝑓(𝜃)/𝜕𝜃 and the values of 𝑓 are approximated using random minibatches 
of 128 instances. The base network is an MLP with a sigmoid activation function and one 
hidden layer of 20 units. The initial value 0 and unpredictability in mini-batch selection are 
the only sources of variation between runs. The trained optimizers were unrolled for 20 
steps after each optimization was done for 100 stages. We applied the input preprocessing 
suggested in Appendix A and rescaled the LSTM outputs by 0.1.  

The middle plot of Figure 4 shows learning curves for the basic network using several 
optimizers. Although NAG, ADAM, and RMSprop perform similarly in this experiment, 
the LSTM optimizer surpasses them by a wide margin. The right plot in Figure 3 compares 
the performance of the LSTM optimizer when it is allowed to run for 200 steps after being 
trained for 100 steps. We used the LSTM optimizer from the last experiment in this 
comparison, and we can see that the LSTM optimizer outperforms the baseline optimizers 
on this task. 

 
Figure 3: Comparisons between learned and hand-crafted optimizers performance 
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Generalization to different architectures 

Three instances of using the LSTM optimizer to train networks with different topologies 
than the base network on which it was trained are shown in Figure 4. 

 an MLP with 40 hidden units instead of 20,  

 a network with two hidden layers instead of one, and  

 a network utilizing ReLU activations instead of sigmoid activations are the alterations 
(from left to right). Despite working outside of its training regime, the 

LSTM optimizer generalizes effectively and continues to outperform the hand-designed 
baselines in the first two examples.  

The dynamics of the learning technique are sufficiently different when the activation 
function is changed to ReLU, however, that the learnt optimizer is no longer able to 
generate. Finally, we present the results of systematically modifying the tested architecture 
in Figure 5; for the LSTM results, we used the optimizer trained with one layer of 20 units 
and sigmoid non-linearities. It's worth noting that in this case, where the test-set problems 
are sufficiently close to those in the training set, the baseline optimizers perform even 
better. 

 
Figure 4: Comparisons between learned and hand-crafted optimizers performance 

 

Figure 5: Systematic study of final MNIST performance as the optimizer architecture is 
varied, using sigmoid non-linearities. 

Training a convolutional network on CIFAR-10 

The trained neural optimizers are then put to the test on the CIFAR-10 dataset 
(Krizhevsky, 2009) to see how well they can improve classification performance. We 
employed a model with both convolutional and feed-forward layers in these tests. The 
model utilized in these trials consists of three convolutional layers with maximum pooling 
followed by a fully-connected layer with 32 hidden units; all non-linearities were ReLU 
activations with batch normalization. 
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The coordinate wise network decomposition and employed in the preceding experiment—
uses a single LSTM architecture for each optimize parameter, with shared weights but 
independent hidden states. Due to the differences between the fully connected and 
convolutional layers, we discovered that this breakdown was insufficient for the model 
architecture presented in this section. Instead, we introduce two LSTMs into the optimizer: 
one suggests parameter updates for fully connected layers, while the other updates the 
parameters of convolutional layers. We still use a coordinate wise decomposition with 
shared weights and individual hidden states, same as the prior LSTM optimizer, but 
LSTM weights are now shared only across parameters of the same type (fully-connected 
vs. convolutional). 

Figure 6 shows the performance of this trained optimizer in comparison to the baseline 
approaches. The results of applying the optimizer to fit a classifier on a held-out test set 
are shown in the left-most graphic. The next two plots on the right show the trained 
optimizer's performance on modified datasets that only contain a subset of the labels, such 
as the CIFAR-2 dataset, which only contains data for two of the ten labels. We also 
included an LSTM-sub optimizer that was only trained on the held-out labels. 

 

Figure 6: Optimization performance on the CIFAR-10 and Subsets 

We can see that the LSTM optimizer learns substantially faster than the baseline 
optimizers in all of these situations, with large performance improvements for the CIFAR-
5 and especially the CIFAR-2 datasets. We can also show that optimizers trained on a 
disjoint subset of the data are unaffected by this change and transfer well to the new 
dataset. 

Neural Art 

Because each content and style image pair generates a novel optimization problem, the 
recent work on artistic style transfer using neural networks, or Neural Art (Gatys et al., 
2015), provides a perfect testbed for our strategy. Each Neural Art problem begins with a 
content image, c, and a style image, s, and is defined as follows: 

𝑓(𝜃) =  𝛼ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡  (𝑐, 𝜃) +  𝛽ℒ𝑠𝑡𝑦𝑙𝑒  (𝑠, 𝜃) +  𝛾ℒ𝑟𝑒𝑔(𝜃) 

The stylized image is the minimizer of 𝑓. The first two terms attempt to match the styled 
image's content and style to that of their first argument, while the third term is a 
regularizer that favors smoothness in the stylized image (Gatys et al., 2015) has further 
information. 

Only one style and 1800 content photos from ImageNet were used to train optimizers 
(Deng et al., 2009). 100 content images are chosen at random for testing and 20 content 
images are chosen at random for validation of trained optimizers. We use 64x64 content 
images from ImageNet and one fixed style image to train the optimizer. We then put it to 
the test to see how well it adapts to a different visual style and higher quality (128x128). 
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Each image was optimized for 128 steps, with 32 steps being unrolled using trained 
optimizers. The effect of utilizing the LSTM optimizer to style two different photos is seen 
in Figure 6. The LSTM optimizer does not employ any postprocessing and uses the input 
preprocessing provided. 

Figure 7 shows how the LSTM optimizer compares to other optimization techniques. 
When the resolution and style of the image are the same as the ones on which it was 
trained, the LSTM optimizer surpasses all regular optimizers. Furthermore, it continues to 
work admirably even when the resolution and style are altered during the test. 

 

Figure 7: The LSTM optimizer compares to other optimization techniques 

CONCLUSION 

We've shown how to turn the design of optimization algorithms into a learning issue, 
allowing us to train optimizers that specialize in specific functions classes. Learned neural 
optimizers outperform state-of-the-art optimization approaches in deep learning, 
according to our tests. The LSTM optimizer, for example, was able to generalize to tasks 
with 49,152 parameters, multiple styles, and distinct content images at the same time, after 
being trained on 12,288 parameter neural art tasks. When shifting to alternative 
architectures in the MNIST test, we observed equally excellent results. When moving to 
datasets selected from the same data distribution, the results of the CIFAR image 
classification challenge reveal that LSTM optimizers outperform hand-engineered 
optimizers. 
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