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ABSTRACT 

In standard target tracking, algorithms assume 
synchronous and identical sampling rate for 
measurement and state processes. Contrary to these 
methods particle filter is proposed with variable rate. 
These filters use a restricted number of states, and a 
Gamma distribution is applied at state arrival time so that 
the maneuvering targets could be tracked. Although this 
structure is capable of tracking a wide range of targets 
motion features using linear, curvilinear motion 
dynamics, it suffers from a basic weak point. It cannot 
estimate the position of targets in high maneuvering 
regions. Thus, multiple model variable rate particle filter 
(MM-VRPF) is utilized to overcome this shortage using 
various dynamic models. A weak point of a particle filter 
is a phenomenon called degeneracy that even exists in 
MM-VRPF structure. In this study, differential evolution 
method, is exploited to improve the mentioned method 
and a novel structure called multiple model variable rate 
particle filter with differential evolution (MM-VRPF with 
DE) is introduced. The simulation results of a bearing 
only tracking achieved from a maneuvering target, 
revealed that the proposed structure has better 
performance while it maintains advantages of variable 
rate structure. 
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INTRODUCTION 

General speaking tracking is referred to obtaining kinematic parameters of the target (such 
as location, velocity, acceleration) during a time interval based on noisy observations. 
During the last decade tracking maneuvering targets have experienced increasing 
progress and has attracted great attention owing to the development of numerical 
techniques (Jilkov, 2003). Estimation in nonlinear systems is a prominent issue in many 

This article is is licensed under 
a Creative Commons Attribution-
NonCommercial 4.0 International 
License. 
Attribution-NonCommercial  
(CC BY-NC) license lets others  
remix, tweak, and build upon  
work non-commercially, and  
although the new works must  
also acknowledge & be non-
commercial. 

 

 
 
 
 
 
 
 
 
 
 

 
Source of Support: Nil  
Conflict of Interest: Declared 

 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Asia Pacific Journal of Energy and Environment, Volume 2, No 2 (2015)                                                                                                                                 

Asian Business Consortium | APJEE Page 38 

 

 

applications. Bayesian field is one of the most popular estimation techniques. From its 
perspective, the objective is to estimate a stochastic process based on noisy observations. 
In this framework state space equations are common. The goal is to estimate the state of a 
dynamic system based on noisy observations that are a function of system state. In 
Bayesian filter, it is desired to estimate posterior probability density function. Knowing the 
probability density, an optimized estimation of states might be achieved, and it could be 
calculated proportionate to every criterion function. Since this filter does not have a closed 
solution, different methods have been proposed for its implementation in accordance with 
process and measurement model. With this regard for limited linear dynamic systems 
grid, based filters are utilized Fox (2003), Boers (1999). Furthermore in case of a nonlinear 
system and Gaussian noise Extended Kalman Filter (EKF) is exploited Ristic (2004), Simon 
(2006). Increase in nonlinearity of the system, the estimation results are distorted, and the 
posterior probability function violates Gaussian state and destroys the estimations Ristic, 
(2004), Arulampalam (2002). Another practical solution for implementation of Bayesian 
filters is using nonparametric methods among that the most important one is the particle 
filter (Gordon, 1993). In the above-mentioned filter posterior probability density function 
is estimated by a set consisting of weighted a particles Ristic, (2004), Arulampalam (2002).  
In standard methods for target tracking and particularly in particle filter, the state 
sampling rate is determined proportionate to measurement rate. A modern and economic 
approach is utilizing variable rate particle filter (VRPF) where state arrival times (new 
states) are modeled as pseudo-Markovian random process. Although this structure would 
be able to track different features of motion using linear, curvilinear motion dynamic 
model, it is not capable of providing a precise estimation in regions with high maneuver. 
To address this problem, a structure with multiple models might be employed that 
models, target motion dynamics using a set of models and it can switch between these 
models. The modified structure is called multiple mode variable rate particle filter (MM-
VRPF). Using this method continuous certain process proposed in Godsill (2007), Ulker 
(2012) will be maintained; meanwhile, they would be adapted to variable rate structure 
with multiple models, so that the tracking operation is improved. 
The most essential weak point that must be taken into considerations in particle filters is the 
degeneracy  phenomenon that results from an increase in variance of weights (Doucet, 2000). 
In practice, it has been observed that most of the samples have normalized weight close to 
zero after a short time, and only one sample has a large weight. So the weights of some 
samples are calculated whereas they have a negligible effect on the final estimation that is a 
waste of power. To address this issue resampling is utilized. In resampling stage, weighted 
samples at the end of a step, are sampled N times. The chance of each sample for being 
selected depends on its weight. As a result, in this step samples with greater weights are 
copied several times and samples with smaller weights would be eliminated. At the end of 
this step a non-weighted estimation of joint posterior distribution is achieved. Numerous 
algorithms have been proposed for resampling; in (Doucand, 2005) a good comparison is 
presented. Resampling method improves degeneracy (Gordon, 1993); however, it has a 
crucial weakness called sample impoverishment. It is due to repeat of samples with large 
weight. It causes all samples to have the same history after a specific time step. In this paper 
differential evolution optimization algorithms are utilized to mitigate degeneracy an a new 
set of filters are introduced; multiple model variable rate particle filter with differential 
evolution (MM-VRPF with DE). In this algorithm particles are optimized using differential 
evolution algorithm and they are combined with a random set obtained by probability 
distribution in variable rate structure, so that better solution is derived. 
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The simulation results illustrated that proposed structure increases efficiency and 
precision in path estimation compared to MM-VRPF. 

VARIABLE RATE PARTICLE FILTER AND MODELING TARGET MOTION  

This paper focuses on improving tracking operation and increasing estimation precision in 
MM-VRPF. In order to understand other sections here, a brief review on the structure of, 
variable rate particle filter is provided. More details might be found in Ulker (2012), Punch 
(2012). 

In standard constant rate stat-space models a state variable tx  is defined that evolves 

during time with t index. The generic model is considered between time {0 and T}. variable 
state sequence follows a Markovian process and they are generated based on density 
function shown in equation (1) Godsill (2007), Ulker (2012).    
                  
𝑥𝑘~𝑝(𝑥𝑘|𝑥𝑘−1),     𝜏𝑘 > 𝜏𝑘−1                  (1)   

Where 𝑥𝑘 is State with variable rate is defined in the form of ( , )k k kx   , k  is a discrete 

index and k and k  respectively denote new state arrival in witch state, and a vector of 

target parameters. 
In a variable rate model state assignment is not synchronous with observations. Thus, the 
optimum solution is when state positions (new states) are dependent on a probability 
function. As a matter of fact, it is assumed that an observation is independent of all data 
points except neighboring points. Similarity probability function for consecutive values of 
t  could be defined as equation (2) (Ulker, 2012): 

0:(y ) (y )
tt t Np x p x             (2) 

Where  0:;k ( )
tN k tx x N x   and ty  is an observation. 

It is noteworthy that 𝑁𝑡 includes all states close to observations at times t. A process in the 

form of (x )
tt t Nf   is defined that might be utilized for calculating probability 

function. It is assumed that the largest and smallest elements of neighboring set are  𝑁𝑡
+ 

and  𝑁𝑡
−, respectively. Finally, common density of observations and states could be 

demonstrated as shown in equation (3) according to Markovian assumptions (Ulker, 2012). 

0: 0: 0 1

1 0

( , ) ( ) ( ) (y ),
t

k T

k T l l t N T

l t

p x z p x p x x P x K N 



 

     (3) 

Where TK N   guarantees a complete neighborhood for calculating density observed at 

the end of  T time index. 

Defining 0: 0( ,..., )t tz z z
 

as observations and 00:N
( ,..., )

t tN
x x x  as desired target 

states (that is always a random variable), it can be said that at each time step t, VRPF 
structure will result in an estimation of optimized filtering distribution. It is denoted (as 

shown by equation (2) (Ulker, 2012)) in the form of a combination of pN  “multi 

dimensional” Dirac delta each of that illustrates a particle. 

0: 00:N : 0:N
1

(X , ) ( )
d

t t t

N
i i

t t t N
i

p N z x x   





            (4) 
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Where 𝜔t
i 

 
is the weight of its particle. The above equation calculates 𝑤t

i at state arrival time 

by performing updating operation based on equation (5) (Ulker, 2012) and 𝜔t−1
i . 

1 1

1 1

1:N

1

0:1:N

( ) ( )

( , )

t t t t

t t t

i i i

t N N Ni i

t t
i i

tN N

p y x p x x

q x x y
 

 
 

  
 







                               (5) 

As mentioned before in a conventional variable rate particle filter merely, one model is 
exploited to estimate the position of the target. According to (Godsill, 2007) a CL model 
would be an appropriate choice in such filter for modeling target motion.  
In CL model tangent and perpendicular motions depend on the target. If consider R as the 

passed motion path and ,T KL  and ,P KL  as dynamic value of tangent motion and pitch 

motion, respectively, equation (6) could be derived. 
2

, , 2
,P K T K

ds d d s
L m L m

dt dt dt


                                  (6)  

Where ψ are a relative angle with 1l   an axis, m is the mass of target and t lies in

1k kt    . As a result, target state vector k  
is illustrated by a vector in the form of 

equation (7). 

, , ( ) ( ) ( )P K T KL L V k k z k   
 
  

                                           (7) 

Where ( )k   is the course and ( )V k  is the velocity of the target.
 1 2( ) [ ]V k l l   is the 

thK state vector in 1l and 2l coordinates. 

MULTIPLE MODEL VARIABLE RATE PARTICLE FILTER 

In standard VRPF method new state arrival time and target motion are configured using a 
united model. However, during a maneuver motion parameters and arrival, times are 
diverse due to the nature of targeting problem. On this basis usually state arrival times 
and target maneuver parameters are not estimated with a unique model. To improve the 
structure, a multiple model variable rate structure, is proposed. In this structure, arrival 
times and maneuver parameters are modeled by a model consisting of a triplet set of 
parameters that improves targeting operation. In this method another state 
variable (𝑚𝑘) is added to the state vector of VRPF. It shows dynamic motion mode and is 
denoted by equation (8) (Ulker, 2012). 

[ , , ] [1,..., j]k k k k kx m m                                                                        (8) 

Where j means all states. Each targeting plan or program is used for demonstration of a set 
of dynamic states. Each state particularly demonstrates a specific feature of the target 
maneuver. In this paper we deal with a model consisting of three states so j is selected to 
be three. It is worth mentioning that increase in a number of states does not necessarily 
lead to improvement of filter performance. Thus, selecting the states in a “multiple model” 
system must be a function of desired complexity (Ulker, 2012). The desired structure is 
demonstrated in equation (9) (Ulker, 2012). 
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( ) ( , , , )

( ) p( , )

k k k k k k k

k k k k k

p x x p m

p m m m

   

 

  

  




                        (9) 

Where 𝑝 = (𝑚𝑘|𝑚𝑘−1)
 
is the probability of state transition. It shows the probability of 

transition from one state to another and staying in a specific state. These probabilities are 
demonstrated by state transition matrix p as shown in equation (10) (Ulker, 2012). 

11 1

1

r

r rr

p p

p

p p

 
 


 
  

    (10) 

Where ,{h, l} {1,..., r}hlp  demonstrates values of probability of transition from h  to l . 

Practically matrix p is directly determined based on desired target maneuver. In (Bloomer, 
2002), some specific methods for selecting p are mentioned. Moreover, some methods for 
online calculation of p matrix could be found in (Jilkov, 2004). 

Consequently for target motion kinematic vector k  can be illustrated by 

, , ( ) ( ) ( )P K T KL L V k k z k   
 
  

 (Ulker, 2012) where ,P KL and ,T KL could be 

denoted by equations (11) and (12)  in the form of Gaussian distribution (Ulker, 2012). 

 𝐿𝑃,𝐾~𝑁(0, 𝜎2
𝑝,𝑛)                                                                                                       (11) 

 𝐿𝑇,𝐾~𝑁(𝜇𝑇, 𝜎2
𝑝,𝑛)                                                                                      (12)       

Furthermore, 1 1( , )k k kp m     
in equation (9), is conditional to discrete variable the 

mode. The previous arrival time is shown by a shifted Gamma distribution as denoted by 
equation (13) (Ulker, 2012). 
 𝜏𝑘 − 𝜏𝑘−1 − 𝜏𝑛~𝐺(𝛼𝑛, 𝛽𝑛)                                                                                              (13)                   

Where  𝜏𝑛 is the sojourn time shifting parameter and 1 1, {1,..., }k kn m m r    

demonstrates model motion mode. Therefore, new state arrival time 
i

k  
on km

 
mode and 

previous states arrival time 
i

k 1   (where 1,..., NPi  and pN is the number of samples 

selected from  an initial distribution) are generated according to equation (13). 
Now a combination of multiple model structure with variable rate models is presented. 
Similar to standard structure in the multiple model variable rate structure mentioned steps 
are taken to estimate the state. 

 
Initial setting 
In this stage values are assigned to all particles according to a determined distribution. At 

time t=0, pN samples are selected; then, selected samples are weighted based on their 

similarity to actual value in the form of equation (14). 

0

1i

t

pN
   , 1,..., N .Pi                                                              (14) 

 Where 0

i

t   is particle weight at time t=0. 
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Propagation step 

In this step as soon as a new state arrives, pN samples are selected based on q(.) 

distribution that plays the role of previous state distribution. q(.) distribution is stated as 
shown by equation (15) (Ulker, 2012). 

1 1 1 1
:1:N 1:

( , ) ( )
t t t t t t

i i

o tN N N N N
q x x y p x x     

    
                                              (15) 

 

Updating the particle  weights 
Updating is performed based on a simplified form of equation (5). In this equation if 
previous distribution q(.) is utilized, a simpler equation in the form of equation (16) is 

derived (Ulker, 2012) that is exploited for calculating particle weights , 1,..., Ni

t Pi  . 

1 ( )
t

i i i

t t t Np y x                                                                             (16) 

Thus, ( )
t

i

t Np y x probability in updating operation of 
i

t  could be defined in the form of 

equation (17). 

( ) ( )
tt N t tp y x p y 

                                                  (17) 

Finally, it could be concluded that posterior probability function 0:( , | )t t tp x y

N N
 
is 

estimated by associated weight vectors {𝑦𝑡
𝑖}

𝑖=1

𝑁𝑝
 and particles {𝑥𝒩𝑡

𝑖 }
𝑖=1

𝑁𝑝
. Afterwards, if 

2

1

1

( )
p

eff N

i

t

i

N

w






is less than default threshold value, resampling operation will be done. 

MM-VRPF structure does not need regeneration stage whereas it is necessary for VRPF 
framework; thus, it considerably reduces a computational load (Ulker, 2012). 

DIFFERENTIAL EVOLUTION 

Differential evolution (DE) is a differential algorithm proposed by Storm and Price in 1995. 
This algorithm uses evolution operators such as other differential algorithms; nevertheless, 
this method utilizes current distance and direction information to guide searching process. 
The most important operator in the evolutionary algorithm is a mutation operator that is 
utilized for generating target vector and children (Engelbrecht, 2007). In fact, differential 
evolution is an optimization method for “multi dimensional” functions including a 
population of possible solutions. High speed and simplicity are characteristics of this 
method. If there is no default information regarding analysis space, an initial population 
might be generated randomly. 
In this paper standard version of DE i.e. (DE/rand/1/bin) is utilized. This method starts 

by setting three parameters rC , pN and F that denote probability of a turn, size of 

population and mutation weight, respectively. According to Storm’s assumption, these 
values are set between {0 to 2}. Choosing smaller values for F increases a convergence 
speed while higher values result in more diversity in generated population. 
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The above algorithm, first off, randomly generates a population in the size of pN . 

Besides, this algorithm includes three stages mutation, recombination and selection. A 

population in the form of 
i

Gp  is considered and a vector whose length is pN . The vector 

includes elements in the form of J,G

ip  illustrating the size of a population where j is the 

position in R-dimension unique element and G demonstrates the generation to that the 

population belongs. i is an index for each element in 
i

Gp ; these triple steps are briefly 

explained Engelbrecht (2007), Rahnamayan (2008), Das (2005). 
 

Mutation 
In this stage, three vectors are randomly selected so that they are mutually different. The 
result is a directed vector that is shown in the form of equation (18) for each vector inside 
the population. 

31 2 ( )( ) ( )( ) *( )
rr ri

j j j jx p F p p                                                              (18) 

Where 1,..., pi N  and, 1r , 2r  
and 3r  

are mutually different random vectors that are 

selected based on {1,..., }pN . 
 

Recombination 
In this stage mutated vector components are transferred to candidate vector with equal 

probability of rC ; otherwise, equivalent component will be substituted in main vector and 

shown in the form of equation (19). 

,( )

,

,

( ) ()i

j G ri

j G

i

j G

x if rand j c or j randb
u

p else


 

 



                          (19) 

Where rand(j) demonstrates a jth call of a random function that is a number between {0 and 
1}. To make sure that at least one component is transferred to test vector, one component is 

transferred from the mutated vector to test vector disregarding rC . So, for each candidate 

vector one component is selected for transferring to a next generation. 
 

Selection 
To select residuals, each vector is compared to corresponding candidate vector. As a 
result, each of them that is more competent will be transferred to the next generation. 

By selecting vector 𝑥𝐺
(𝑖)

or 𝑃𝐺
(𝑖)

as a member of next generation 1G  , one may write 

according to equation (20). 

( ) ( ) ( )
( )

1
( )

, ( ) (x )i i i
i G G G

G
i

G

x if f p f
p

p else





 


                            (20) 

In the algorithm (1) DE performance would be introduced as a pseudocode. 
.................................................................................................................................... . 
Algorithm 1. D E 

............................................................................................................................. ....... 
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Input: Initialize and evaluate population pN   

         Repeat 

                     For 1 pi N do    

                             Select 1( )r
p   to 3( )r

p , where 1 2 3r r r i     

                            // Selecting R, as the dimension of a particle 

                            ( (0,1))randj floor R rand   

                             For 1,...,j R do    

                                          if (0,1) r randrand C or j j then   

                                                 
31 2 ( )( ) ( )( ) *( )

rr ri

j j j jx p F p p  
 

                                          else    

                                                 

( ) ( )i i

j jx p
  

                                          end if 
                              end for    
                      end for 
                     // select next generation 

                      for 1 pi N do   

                             If 
( ) ( )( ) (x )i if p f then 

                                      
( ) ( )i ip x

  
                             end if 
                      end for 

          Termination conditions 
……………………………………………………………………………………… 

MULTIPLE MODEL VARIABLE RATE PARTICLE FILTER WITH DIFFERENTIAL EVOLUTION 

Degeneracy phenomenon is a weakness of the particle filter. This phenomenon is resulted 
from variance of sample weights, and it is still a problem in MM-VRPF structure. 
Many efforts have been made to generate a new group of particles that can generate 
higher weights such that these particles are substituted for particles with much smaller 
weights. In this paper, differential evolution algorithm is exploited to obtain such 
particles. These particles have the most proper unique values. With this regard, the fitness 
function in DE  is a function for calculating the weight of a particle. 
In the algorithm (2) the result of merging DE and MM-VRPF algorithm is presented. Lines 
starting by (///) demonstrate changes that are resulted after merging. 
......................................................................................................................................... 
Algorithm  2. MM-VRPF with DE 
............................................................................................................................. ............... 
Input: Initialization 

Set t = 0 
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     For 1 pi N  , draw equally weighted samples, 𝑥0
𝑖 ~𝑝(𝑥0) from the predefined. 

 
Initial step 

    /// distribution and set t = 1 with optimal states that are calculated by differential 
               Evolution. 

      

Propagation step 
     Set  𝑘 = 𝑁 + 𝑡 − 1  

           for 1 pi N   

        -  during the neighborhood 
i

tN  are incomplete  

        * Set k = k + 1 and draw samples form the proposal distribution                      

                𝑥𝑘
𝑖 ~𝑞(𝑥𝑘|𝑥𝑘−1, 𝑦𝑡) until  .k t                   

              /// The particles are optimized by differential evolution. 
              /// Mixing particles that is achieved from two previous steps with the  
                   parameter 𝑁𝑑 . 
                

 Weight update step 
       Calculate the particle weights  

      
1 1

1 1

1:N

1

0:1:N

( ) ( )

( , )

t t t t

t t t

i i i

t N N Ni i

t t
i i

tN N

p y x p x x
w w

q x x y

 
 

  
 







     

       Normalize the  particle weights. 
 

 Resampling step 

           Resample {xNt

i , wt
i}

i=1

NP
 if effective sample size N̂eff =

1

∑ (wt
i)2Np

i=1

 , is Below a 

            preset a threshold.   
            Set  𝑡 = 𝑡 + 1. 

Iterate through Propagation step 
..........………………………………………………………………………………………… 

 
The difference between proposed mechanism and MM-VRPF algorithm is that it selects a 
number of particles based on differential evolution algorithm instead of applying a 
probability distribution. Subsequently, 𝑁𝑑 optimized samples are combined with other 
remained samples derived from the probability distribution and constitute a set of 
optimized samples that can be utilized in next steps of algorithm structure. In other words, 
samples are optimized by differential evolution algorithm. Then, they are combined with a 
random set obtained by probability distribution so that samples result in better response. 

SIMULATION RESULTS 

In this section a comparison between proposed method and VRPF and MM-VRPF 
methods is performed. The practical application of our method in trajectory tracking of 
maneuvering target specially its bearing-only will be investigated. On this basis, for 
observation y at time t equation (21) can be written (Sanjeev, 2004). 
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1 10

2 20

arctan( )t t

l l
y v

l l


 


                                                                    (21) 

Where arctan(.) demonstrates nonlinear relationship, vt~N(0, σθ
2) is the sensor noise and 

 10 20

T
l l denotes the position of sensor (Sanjeev, 2004). 

There are two efficiency measures for evaluation of tracking filters; time averaged root mean 

square position error 
( )RMSE

and instant root mean square position error
(RMSE)t  are 

mentioned in equation (22). The achieved values for these two measures are obtained 
 
 by Monte Carlo method with L=100 runs (Ulker, 2012). 
 

2

2

2 2

1 1 2

1

2 2

1 1 2

1 1

1
( ) ( )

1
( ) ( )

L
i i i i

t t t t t

i

T L
i i i i

t t t t

t i

RMSE l l l l
T

RMSE l l l l
LT



 

   

   





                                  (22) 

Where T is an index to the last observation. Moreover, for executing it run 
i

tl and 
i

tl

values respectively state estimated and actual positions at time t. 
In the figure 1.(a) desired trajectory is depicted. According to mentioned scenario in 
(Sanjeev, 2004) target and observer start their motion from origin with constant velocity of 
4 and 5 knots, respectively and courses of -150 and 140, respectively. After that, the target 
executes a maneuver with constant turn rate 24o/min between 20 and 25 minutes. Finally, 
the same course will be maintained till the end. After movement, observer experiences a 

maneuver in (12-16) time interval with constant turn rate of 30 / min  to reach 20 course. 
For this scenario, it is assumed that the total number of observations is 40, and the period 
of observation is 1 minute.  
To observe the behavior of mentioned methods in a description of target motion, initial 
conditions are set using actual values. For instance, Gaussian value with (𝜎𝜃 = 1.5) for 
bearing and (𝜎𝑟 = 100𝑚)

 
for range are chosen. Additionally, considering unique features 

such as displacement parameters and velocity of the target, the values of  P transition 
matrix are selected as shown in equation (23) Ulker (2012), Sanjeev (2004). 

 

0.5 0.25 0.25

0.35 0.45 0.2

0.35 0.2 0.45

P

 
 
 
 
 
 

                                                                (23) 

Table 1 represents sojoum time distribution parameters for MM-VRPF and VRPF (Ulker, 
2012). This table considers three states; (n=1) for modeling direct form of motion and 
(n=2,3) to model motion maneuvers of target. The multiple model structure can switch 
between these states. 
In Figure 1 sections (b), (c) and (d) explain state arrival the and trajectory points generated by 
the VRPF, MM-VRPF and MM-VRPF with DE respectively. Figure 1.(c) and (d) show the MM-
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VRPF and MM-VRPF with DE structure are capable of  locating frequent states at  bearing 
region while using a parsimonious state representation for the smooth regions of the trajectory. 
Figure 2 depicts graphs resulted from tracking operation. Figure 2.(a), (b) and (c) 
respectively illustrate tracking operation based on VRPF, MM-VRPF and MM-VRPF with 
DE. It is obvious that tracking curve particularly in bearing only regions have much higher 
quality in MM-VRPF and MM-VRPF with DE than VRPF. Furthermore, focusing on MM-
VRPF with DE graph may help us to understand its relative superiority to MM-VRPF 
technique in path estimation. 

Figure 3 shows tRMSE  values for three mentioned structures. In figure 3.(a) the diagram 

of tRMSE
 
versus 𝑁𝑝 = 2000 and in figure 3.(b) versus 𝑁𝑝 = 4000 are shown using 40 

observations for mentioned scenarios. In addition, numerical values of RMSE for 𝑁𝑝 =

2000  and  𝑁𝑝 = 4000  could be seen in table 2.  Investigating values presented in table 2 

together with tRMSE
 
diagram in figure 3, the superiority of proposed structure could be 

concluded. 
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 Figure 1.(a) Observer and target trajectories for desired scenario. Trajectories and states of 
a particle generated by (b) the VRPF, (c) the MM-VRPF and (d) the MM-VRPF with DE. 
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Figure 2. Tracker  results by (a) the VRPF, (b) the MM-VRPF, (c) the  MM-VRPF with  DE. 
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Figure 3. tRMSE versus time t for true initials by (a) 𝑁𝑝 = 2000, (b) 𝑁𝑝 = 4000.
 

 

Table 1. MM-VRPF and VRPF parameters for the desired scenario.
 

          MM-VRPF     VRPF 

MOD.1 MOD.2,3 

, ,,T n T n   

, ,,p n p n   

,n n   

n  

(0,100)  

(0,500)  

(1.5, 4)  

(0)  

(0,100) 

( 1100,3000)  

(0.5,0.35) 
(0.5) 

(0,100) 
(0,5000) 
(0.5,6.5) 
(0) 

 

Table 2. RMSE for varying particle size obtained by using true initials for the desired 
Scenario. 

         (VRPF)     (MM-VRPF) (MM-VRPF with  DE) 

2000pN   234.55 166.89 156.20 

4000pN   233.44 149.36 138.50 

CONCLUSION 

In this paper a new approach to merging DE structure with MM-VRPF structure is 
proposed. In this approach MM-VRPF with DE structure is suggested to improve 
degeneracy phenomenon that is a consequence of increase in sample weights. This 
method combines optimized samples generated by DE algorithm with other samples 
obtained from probability distribution applied to variable rate structure. As a result an 
optimized set of samples is achieved that will be used for estimation. The simulation 
results revealed relative superiority of this method in tracking high maneuver points of 
targets and error reduction. 
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