Code Refactoring for Energy-Saving Distributed Systems: A Data Analytics Approach
DOI:
https://doi.org/10.18034/apjee.v11i1.780Keywords:
Code Refactoring, Energy Efficiency, Distributed Systems, Data Analytics, Energy Profiling, Sustainable Computing, Performance Optimization, Green ComputingAbstract
This research uses data analytics and code refactoring to improve distributed system energy usage. The goal is to provide a framework for energy profiling, performance monitoring, and predictive analytics to discover inefficiencies and save energy. Secondary data analysis is used to analyze research and case studies on energy-aware refactoring and distributed computing data analytics. Energy profiling is essential for discovering inefficiencies, while algorithm improvement, intelligent job allocation, and redundancy reduction considerably cut energy use. Predictive analytics allows dynamic energy optimization, and real-time feedback loops optimize energy-saving measures. The report also notes data accuracy, computational overhead, and energy efficiency-system performance balance issues. The policy implications include industry standards, clear guidelines, and government incentives required to disseminate energy-efficient code. By promoting energy-aware refactoring, these rules might create more sustainable and cost-effective distributed systems. This study emphasizes data-driven energy efficiency in distributed systems and advances sustainable computing expertise.
Downloads
References
Boinapalli, N. R., Farhan, K. A., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). AI-Enhanced IMC: Leveraging Data Analytics for Targeted Marketing Campaigns. Asian Business Review, 13(3), 87-94. https://doi.org/10.18034/abr.v13i3.729 DOI: https://doi.org/10.18034/abr.v13i3.729
Breuker, D., Delfmann, P., Dietrich, H-a., Steinhorst, M. (2015). Graph Theory and Model Collection Management: Conceptual Framework and Runtime Analysis of Selected Graph Algorithms. Information Systems and eBusiness Management, 13(1), 69-106. https://doi.org/10.1007/s10257-014-0243-6 DOI: https://doi.org/10.1007/s10257-014-0243-6
Burek, P., Loebe, F., Herre, H. (2017). Towards Refactoring the Molecular Function Ontology with a UML Profile for Function Modeling. Journal of Biomedical Semantics, 8. https://doi.org/10.1186/s13326-017-0152-y DOI: https://doi.org/10.1186/s13326-017-0152-y
Carvalho, S. G., Aniche, M., Veríssimo, J., Durelli, R. S., Gerosa, M. A. (2019). An Empirical Catalog of Code Smells for the Presentation Layer of Android Apps. Empirical Software Engineering, 24(6), 3546-3586. https://doi.org/10.1007/s10664-019-09768-9 DOI: https://doi.org/10.1007/s10664-019-09768-9
Cruz, L., Abreu, R. (2019). Catalog of Energy Patterns for Mobile Applications. Empirical Software Engineering, 24(4), 2209-2235. https://doi.org/10.1007/s10664-019-09682-0 DOI: https://doi.org/10.1007/s10664-019-09682-0
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762 DOI: https://doi.org/10.18034/apjee.v8i2.762
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778 DOI: https://doi.org/10.18034/apjee.v10i1.778
Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774 DOI: https://doi.org/10.18034/gdeb.v12i1.774
Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770 DOI: https://doi.org/10.18034/abcjar.v10i2.770
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772 DOI: https://doi.org/10.18034/gdeb.v11i2.772
García-Berna, J. A., de Gea, J. M. C., Moros, B., Fernández-Alemán, J. L., Nicolás, J. (2018). Surveying the Environmental and Technical Dimensions of Sustainability in Software Development Companies. Applied Sciences, 8(11). https://doi.org/10.3390/app8112312 DOI: https://doi.org/10.3390/app8112312
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Huang, G., Cai, H., Swiech, M., Zhang, Y., Liu, X. (2017). DelayDroid: An Instrumented Approach to Reducing Tail-time Energy of Android Apps. Science China. Information Sciences, 60(1), 012106. https://doi.org/10.1007/s11432-015-1026-y DOI: https://doi.org/10.1007/s11432-015-1026-y
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Kero, A., Khanna, A., Kumar, D., Agarwal, A. (2019). An Adaptive Approach Towards Computation Offloading for Mobile Cloud Computing. International Journal of Information Technology and Web Engineering, 14(2), 52-73. https://doi.org/10.4018/IJITWE.2019040104 DOI: https://doi.org/10.4018/IJITWE.2019040104
Kim, D., Hong, J-E., Yoon, I., Lee, S-H. (2018). Code Refactoring Techniques for Reducing Energy Consumption in Embedded Computing Environment. Cluster Computing, 21(1), 1079-1095. https://doi.org/10.1007/s10586-016-0691-5 DOI: https://doi.org/10.1007/s10586-016-0691-5
Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123 DOI: https://doi.org/10.18034/ajase.v8i1.123
Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. Retrieved from https://4ajournal.com/article/view/97
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672
Mallipeddi, S. R. (2022). Harnessing AI and IoT Technologies for Sustainable Business Operations in the Energy Sector. Asia Pacific Journal of Energy and Environment, 9(1), 37-48. https://doi.org/10.18034/apjee.v9i1.735 DOI: https://doi.org/10.18034/apjee.v9i1.735
Manikyala, A. (2022). Sentiment Analysis in IoT Data Streams: An NLP-Based Strategy for Understanding Customer Responses. Silicon Valley Tech Review, 1(1), 35-47.
Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773 DOI: https://doi.org/10.18034/abcjar.v12i1.773
Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99
Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163
Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Rodríguez-Gracia, D., Piedra-Fernández, J. A., Iribarne, L., Criado, J., Ayala, R. (2019). Microservices and Machine Learning Algorithms for Adaptive Green Buildings. Sustainability, 11(16), 4320. https://doi.org/10.3390/su11164320 DOI: https://doi.org/10.3390/su11164320
Siebra, C., Costa, P., da Silva, F. Q. B., Santos, A. M. L., Mascaro, A. (2013). The Hardware and Software Aspects of Energy Consumption in the Mobile Development Platform. International Journal of Pervasive Computing and Communications, 9(2), 139-162. https://doi.org/10.1108/IJPCC-04-2013-0007 DOI: https://doi.org/10.1108/IJPCC-04-2013-0007
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771 DOI: https://doi.org/10.18034/apjee.v8i2.771
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98. DOI: https://doi.org/10.18034/ajase.v8i1.94
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94
Venkata, S. S. M. G. N. (2023). AI-Driven Data Engineering for Real-Time Public Health Surveillance and Early Outbreak Detection. Engineering International, 11(2), 85-98. https://doi.org/10.18034/ei.v11i2.732
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Aditya Manikyala
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.