
Global Disclosure of Economics and Business, Volume 8, No 2/2019 ISSN 2305-9168(print); 2307-9592(online)

This work is licensed under CC-BY-NC, i-Proclaim | GDEB Page 119

Lexical Analysis in Content Management System

Details

Takudzwa Fadziso

Institute of Lifelong Learning and Development Studies, Chinhoyi University of Technology, ZIMBABWE

*Corresponding Contact:

Email: fadziso.tak@gmail.com

Manuscript Received: 25 Sept 2019 - Revised: 21 Dec 2019 - Accepted: 27 Dec 2019

ABSTRACT

In cognitive science, understanding language by humans starts with
recognition. Without the phase, understanding languages become a very
cumbersome task. The task of the lexical analyzer is to read the various input
characters grouping them into lexemes and producing an output of a sequence
of tokens. But before we discuss lexical analysis further, we should have an
overview of this research. Lexical analysis is best described as tokenization that
converts a sequence of characters (program) into tokens with identifiable
meanings. This study aims to look at the various terms or words related to
lexical structure, purpose, and how they are applied to get the required result.
The lexical analysis offers researchers an idea of the structural aspect of
computer language and its semantic content. The work also talks about the
advantages and disadvantages of lexical analysis.

Key Words: Lexer, lexical, tokenization, token analysis, parser, cascading

INTRODUCTION

Lexical analysis is a tool that performs the function of converting stream characters to the stream
of meaningful tokens to simplify parsing. Lexical analysis is an upgrade to manual tagging,
which requires a lot of effort and expertise in the performance of the same function. A lexical
examination is additionally depicted to divide the words or token out of content for simple
estimation, mainly checking. A coding particular has some essential guidelines, the lexical
punctuation that characterizes the lexical sentence structure. Lexical sentence structure is
usually a standard coding, which the punctuation rules comprising ordinary PC articulations.
They address a potential result succession of a token. A lower distinguishes strings and their
different kinds and makes a move delivering a token. The lexical examination is typically
applied to source codes to separate tokens from the source code in a manner indistinguishable
from how compilers play out their lexical investigation. It separates natural language text,
words, and punctuation when necessary for instance, some terms such as 3initialisms contain
periods. Still, most often than not, a period shows that a sentence has been brought to an end

Fadziso: Lexical Analysis in Content Management System Details (119-128)

Page 120 Volume 8, No 2/2019 | GDEB

and not part of a word regarding texts with source code. It might be beneficial to start with a
period like when analyzing Cascading Style Sheets (CSS) or text with CSS snippets, where a
period is used to indicate a Class of CSS. Simply put, lexical analysis refers to various meanings
which are attributed to a specified textual string, known as lexical terms. Lexical terms are
retrieved from a text by a method known as text extraction. The different relationship of
importance with lexical terms identifying with information construction and the piece is
referred to by extensive vocabulary. Lexical Analyses are applied distinctly to finish words or
gatherings. Administrators of characters inside words are worrying about morphology.

APPLICATION

A lexer is a starting phase of a compiler frontend in late handling, empowering investigation to
happen in one pass. Past languages, for example, ALGOL, had their first phase called the line
development, which performed capacities, for instance, undrooping and eliminating white
space and remarks. It had scanner parsers with no different lexer. However, these stages are
currently done as a component of the lexer. Aside from compilers, lexers are utilized for other
code devices like pretty printers. Lexing is generally partitioned into two units; the filtering and
the assessing units. The examining manages to section the information string into syntactic units
considered talks and giving them a specific classification in the token classes.

Figure 1: Lexer (Source: accu.org)

The assessing unit, then again, changes over lexemes into completed qualities. Lexers are
quite clear if the solitary space of troublesomely is the phase structure handling which will,
in general, make input simpler. It is composed by hand either incompletely or entirely to help
its highlights or execution (Ganapathy, 2016). A lexical examination is likewise fundamental
in the beginning phase of normal language preparation, where sound waves are fragmented
into words and other comparative units.

Figure 2: lexer Application (Source: boost-spirit.com)

Global Disclosure of Economics and Business, Volume 8, No 2/2019 ISSN 2305-9168(print); 2307-9592(online)

This work is licensed under CC-BY-NC, i-Proclaim | GDEB Page 121

SOME KEY TERMS

Lexeme: lexeme is just an instance of a token. An arrangement of characters is fused in the
source program that coordinates with the example of a token, and a lexical analyzer ordinarily
recognizes it. The lexeme in computer and lexeme in English linguistics differ. The former
corresponds roughly with the latter but should not be confused to mean the same thing, but
they may be similar to morphemes in some cases (Ganapathy, 2018). Lexemes are named a
token and reciprocally with the string being tokenized and the token information structure
coming about because of making the token go through the tokenization interaction.

Token: a token is a string with a specified meaning. It is arranged in pairs containing a token
name and an optional name. The token name has a category under the lexical unit.

EXAMPLES:

(1) Keyword: names already existing in the programming language, e.g., While, Void, If, For...
(2) Identifier: declared by the programmer.
(3) Separator: They are widely known as punctuations. It includes punctuation characters and
paired delimiters, e.g. (), ;
(4) Literal: numeric characters e.g 123, 12, 34.
(5) Character constant: it could be a single character or a collection of nature in a quote
(6) Comments: They are identified by scanners but not included in the processed work.
(7) Operators: Symbols that has effect on argument and bring out reasonable band desirable
outputs. E.g+,-,*,/.

Pattern: These are descriptions usually used by the token. As regards, keywords that also use
a token is the arrangement of characters.

Lexical grammar: A coding language has some essential principles, the lexical sentence
structure that characterizes the lexical punctuation. The lexical linguistic structure is typically
a standard programming language, which the syntax rules comprising customary PC
articulations. They address a potential result arrangement of a token. A lower recognizes
strings and their different kinds and makes a move delivering a token. Whitespace and
comments are the two most common lexical categories. The lexer measures the two and is
disposed of when it is considered irrelevant while isolating two tokens (if x) rather than if (X).
Notwithstanding, there are two special cases for this. First and foremost, in languages with
the two squares with indenting, the white space is fundamental as it decides block structure
as it works at the lower level. Secondly, comment and whitespace may not be used in pretty
printers, which need to debug tools and provide messages for the program by revealing the
source code. In 1960 Algol removed both whitespace and comment, but the two are now part
of the lexer.

Lexer Generator: This generates lexers. Lexer Generator has some elements of resemblance
with parsers generator. The most settled lexer administrator is the lex, combined with the yacc
or other numerous reimplementations like flex (GNU Bison). The generators would be
portrayed as a type of area explicit language which takes in the lexical determination and
transmitting a lexer. Both the lexer Generator and the parser generator will, in general, yield
rapidly to get a working lexer and because a language detail may change frequently
(Vadlamudi, 2017). They show it progressed highlights like pre-and post-conditions, which
are difficult to program physically. Although an automatic lexer is made still needs manual
manipulation for its effectiveness.

Fadziso: Lexical Analysis in Content Management System Details (119-128)

Page 122 Volume 8, No 2/2019 | GDEB

Figure 3: Lexer Generator (Source: quex.sourceforge.net)

Lexer efficiency is of great concern, especially where the lexer is used often. Lex could be
improved two or three times by more advanced generators. Hand-written lexers have now
become old-fashioned, with modern lexer Generators producing faster lexers. The lex and flex
approach of table-driven is less effective than to direct coded approach (Paruchuri, 2015). In
the latter approach, an engine is created to follow upstate—Re2c as produced engines which
happen to be two or three times faster than flex built engines (Vadlamudi, 2016). Hand-
written analyzers cannot overpower engines generated by tools.

FRAMEWORK FOR PHRASE

As mentioned earlier, lexical analysis of data creates a network of features that is fed into
tokens through simple identification of the features, one item at a time, and categorization.
Lexing may become complex when a token is removed or the lexers add a different token.
Removing tokens may occur by whitespace or commenting common. To omit a token may be
by whitespace and commenting common, especially if the compiler does not need them.
Grouping tokens simplifies the parser by inserting a unique token into a state or a Network.

Line continuation: Lines are created in statements, and these lines are statement terminators.
It is a characteristic of some languages. Termination of lines using backlash results in the bar
connecting to the preceding one. It happens within a lexer as a new line, and a backlash is
removed instead of the tokenization of the new line. e.g., python and bash.

Figure 4: Lexer circle (Source: coinsutra.com)

Global Disclosure of Economics and Business, Volume 8, No 2/2019 ISSN 2305-9168(print); 2307-9592(online)

This work is licensed under CC-BY-NC, i-Proclaim | GDEB Page 123

Offside Rule: This can be carried out by the addition of the results of idents which would
bring out a decent token. They usually are in line with the brace of openings, although
indenting or braces are the main things phrase grammar depends on (Paruchuri, 2017). This
means new lexers should maintain their state, that is, the present indent level, and find the
new patterns if the lexical grammar is not free of context. There is a dependence by dedent
and indent to the preceding indent level as regards contextual information.

LEXING SENSITIVE CONTEXT

Most lexical grammars remain context-free or to some extent and, for that reason, do not need
searching lower behind or upfront or reverse tracking. It allows for easy, neat, and green
utilization. It also permits easy single-manner verbal exchange to the parser from the lexer
while not having facts from below to the lexer. Exceptions to this include simple examples
like inserting a semicolon in Go (Neogy & Paruchuri, 2014).

An extra astounded occasion is the lexer hack in C, wherein the token brightness of a chain of
characters can't be picked until the semantic evaluation stage. I see that made out of names
and variable names are lexically the same. In any case, address supreme token classes. In like
manner withinside the hack, the lexer calls the semantic analyzer (say, picture table) and tests
if the game-plan requires a kind of name. For the current situation, genuine components
should skim lower back now no longer from the parser handiest, at any rate from the semantic
analyzer lower back to the lexer, puzzling the course of action.

TOKENIZATION

Tokenization is the arrangement of limiting and mentioning spaces of a string of entering
characters. The subsequent tokens are then outperformed directly several different conditions
of dealing with. The strategy might be contemplated as a sub-adventure of parsing enter. For
instance, withinside the literary substance string:

Figure 5: Tokenization (Source: en.wikipedia.org)

The string isn't for each situation undeniably segmented on spaces, as a characteristic
language speaker may do. The uncooked enter, the 43 characters, should be unequivocally
isolated into the nine tokens with a given locale delimiter (i.e., organizing with the string " or
average articulation/s/). When a token style addresses numerous attainable lexemes, the

Fadziso: Lexical Analysis in Content Management System Details (119-128)

Page 124 Volume 8, No 2/2019 | GDEB

lexer consistently saves adequate realities to raise the exciting lexeme to be used in the
semantic examination. For the most part, the parser recovers this reality from the lexer and
shops it withinside the rundown punctuation tree. This is fundamental, which will avoid
realities misfortune withinside the instance of numbers and identifiers.

Tokens are perceived as fundamentally dependent on the exact rules of the lexer. A few
methodologies used to choose tokens include: typical articulations, exact groupings of
characters named a banner, accurate keeping separated characters known as delimiters, and
express definition through a word reference (Paruchuri, 2018). Unique characters, comprising
of accentuation characters, are, for the most part, used by lexers to select tokens because of
their homegrown use in composed and programming languages.

Tokens are regularly named through a technique for singular substance material or through
strategy for recommends setting in the experiences stream. Arrangements are depicted
through strategy for strategies for the guidelines of the lexer. Classes reliably contain
accentuation segments of the language used with inside the experiences stream.
Programming languages reliably characterize tokens as identifiers, managers, gathering
pictures, or strategy for estimation techniques (Ganapathy, 2017). Made languages overall
sort tokens as things, activity words, modifiers, or emphasis. Characterizations are used for
post-planning the tokens through the technique for strategies for the parser or method for
strategies for different capacities within the program.

A lexical analyzer ordinarily doesn't a thing with combos of tokens, and a test is left for a
parser. For example, an ordinary lexical analyzer perceives parentheses as tokens. Regardless,
it stays quiet to guarantee that each "(" is composed with a ")." When a lexer deals with tokens
to the parser, the depiction used is essentially a predetermined posting of various
descriptions. For instance, "Identifier" is addressed with 0, "Task administrator" with 1,
"Expansion administrator" with 2, and so forth. Tokens are portrayed habitually through
typical articulations, which can be perceived through a lexical analyzer generator comprising
of lex. The lexical analyzer (made consistently through a device like lex, or hand-made)
examines in a move of characters, perceives the lexemes withinside the move, and orders
them into tokens. This is called tokenizing. If the lexer uncovers an invalid token, it'll record
a misstep. Following tokenizing is parsing. The deciphered realities can be stacked into
realities frameworks for standard use, translation, or incorporation.

Scanners: The primary stage, the scanner, is generally founded on a limited state machine
(FSM), which contains data about the encoding of potential strings contained in every token
(a solitary occasion of these strings) it measures. For instance, number labels can contain any
grouping of numbers. By and large, the primary non-space character can decide the sort of
the following token, and afterward, ensuring information characters are handled
independently. A character not in the token's legitimate character set is reached (this is known
as the maximal crunch rule or longest match). In specific languages, the token creation rules
are more mind-boggling and may incorporate traceback characters. The "L" character isn't
sufficient to recognize identifiers starting with "L" and wide string literals.

Evaluator: In any case, the lexeme is just strings known to have a place with a specific kind
(for example, text strings, and alphabetic strings). To produce the token, the lexical analyzer
needs the subsequent advance, a calculator situated over the token character, to get the worth.
The sort of token joined with its importance can accurately address the token passed to the
parser. A few labels, like parentheses, really have no worth, so the evaluator can't return
anything for them: just the sort is required. Essentially, the evaluator can at times smother

Global Disclosure of Economics and Business, Volume 8, No 2/2019 ISSN 2305-9168(print); 2307-9592(online)

This work is licensed under CC-BY-NC, i-Proclaim | GDEB Page 125

labels totally by concealing them from the parser, which is helpful for spaces and remarks.
Personality evaluators are typically straightforward (they address an identifier). The exacting
whole number evaluator can pass a string (concede the assessment to the semantic
examination stage) or play out the actual assessment and be utilized on various bases or
diverse gliding point numbers (Vadlamudi, 2015). The evaluator requires eliminating the
quotes for single-cited string literals, yet the evaluator for avoided string literals incorporates
a lexical analyzer that eliminates get-away from groupings. For example, in the source code
of a computer program, there is a linenet_worth_future = (assets-liabilities); It can be the next
stream of lexical tokens; spaces are suppressed, and special characters do not matter:

Figure 6: Evaluator (Source: coinsutra.com)

SEMICOLON: Due to existing parser license restrictions, it may be necessary to write a lexical
analyzer manually. This is valuable if your token rundown is little. However, as a rule, lexical
analyzers are created via computerized apparatuses. These apparatuses ordinarily
acknowledge ordinary articulations that portray the labels permitted in the information
stream (Donepudi, 2014b). Every standard articulation is relegated to a creation rule in the
word reference. A programming language linguistic structure is utilized to assess tokens
comparing to customary articulations. These instruments can produce source code that can
be gathered and executed or make a state progress table for the state machine (incorporated
into the standard code for aggregation and execution). Standard articulations are smaller
examples that can follow stamped characters. This can be minimalistically spoken with the
character plan [a-zA-Z _] [a-zA-Z_0-9] *. This implies "any character az, AZ, or _ followed by
at any rate 0 characters az, AZ, _ or 0-9". Customary articulations and the state machines they
produce are sufficiently not to deal with recursive examples, for example, "n open parentheses
followed by an assertion followed by n right parentheses. Unless there is a limited set of valid
values for n, you cannot track and verify that the n on both sides are the same. To fully
recognize these patterns, a complete parser is required. The parser can put the parentheses on
the stack and afterward attempt to erase them and check whether the stack is vacant toward
the end (see a model in the design and clarification of PC programs).

An individual arrangement that isn't generally practical to try into an authentication token is
a lexical botch. Significant data roughly the lexical botches: Lexical slip-ups aren't normal.
Nonetheless, it must be controlled through a method of methods for a scanner. Incorrect
spelling of identifiers, administrators, and watchwords are contemplated as lexical errors
(Ganapathy & Neogy, 2017). By and large, a lexical goof results from the coming of a couple
of unlawful people, much of the time toward the beginning of a token.

Impediment: Tokenization is typically done at the word level. In some cases, it isn't easy to
characterize the significance of a word. Commonly, tokenizers depend on straightforward
heuristics, like accentuation, and spaces might be remembered for the outcome label list. All
concatenated text strings are part of the token; the numbers are the same. Tags are separated by
spaces, such as spaces or newlines or punctuation. This method is fairly simple in languages
that use spaces between words (for example, most written Latin languages and most
programming languages). But here, there are also many edge cases, such as abbreviations,

Fadziso: Lexical Analysis in Content Management System Details (119-128)

Page 126 Volume 8, No 2/2019 | GDEB

hyphens, smiley faces, and larger structures such as URIs (which can be treated as separate
tokens for some purposes). The classic example is "based on New York," even if the best
breakthrough (possibly) is in the script, a naive tokenizer can break into space. For constantly
composed languages without word limits, like old Greek, Chinese or Thai, tokenization is
especially troublesome. Scaffold languages like Korean likewise make the undertaking of
tokenization troublesome (Vadlamudi, 2018). A few answers for more unpredictable issues
incorporate growing more mind-boggling heuristics, questioning tables of essential exceptional
circumstances, or adjusting the markup to a language model that decides future areas.

LEXICAL ANALYZER ARCHITECTURE

How tokens are obtained

The most important venture of lexical evaluation is to examine enter characters with inside
the code and convey tokens. Lexical analyzer scans the whole supply code of the program. It
identifies every token with the aid of using one. Scanners are generally applied to supply
tokens most effectively while asked with the aid of using a parser. This works "Get the
following token" is an order sent by the parser to the lexical analyzer. In the wake of accepting
this order, the lexical analyzer checks the contribution until it tracks down the following
token. Return the token to the parser. These tags are generated when comparing errors
reported by the lexical analyzer. This error is related to the original file and the line number.

Figure 7: lexical analyzer (Source: www.geeksforgeeks.org)

THE ROLE OF LEXICAL ANALYSER: The lexical analyzer plays out the accompanying
explicit errands: Helps distinguish the imprints in the image table Removes spaces and
remarks from the source program Related blunder messages to the source program. On
the off chance that the large scale is found in the source program, it extends the full scale
from the source program Input characters read.

LEXICAL ERRORS: A string that can't be filtered into a legitimate token is a lexical mistake.
Key realities about lexical mistakes: lexical blunders are not normal, but rather the scanner
should deal with them. Lexical errors generally, lexical mistakes happen when invalid
characters show up, fundamentally toward the start of the token.

FIXING ERRORS IN LEXICAL ANALYSER: Here are probably the most well-known
approaches to fix blunders: Remove a character from the leftover contribution to freeze
mode. Sequential characters are constantly disregarded until we arrive at an appropriately
designed token. Information replaces one character with another character modifies two
characters in a steady progression.

WHY SEPARATE LEXER FROM PARSER?

Simple design: Simplify the process of lexical analysis and parsing by deleting unnecessary
tags. Improve the efficiency of the compiler: help improves the efficiency of the compiler.
Specialization: You can use specific techniques to improve the lexical analysis process.

Global Disclosure of Economics and Business, Volume 8, No 2/2019 ISSN 2305-9168(print); 2307-9592(online)

This work is licensed under CC-BY-NC, i-Proclaim | GDEB Page 127

Summarily Lexical Analysis is the first stage of the development of the compiler. The imprint
is the arrangement of characters in the source program as per the imprint coordinating with
design. A lexical analyzer is executed to check all program source codes. The lexical analyzer
distinguishes tokens in the character table; strings that can't be examined as substantial tokens
are lexical blunders (Donepudi, 2014a). Erase one character from the excess information.
Accommodating. Blunder remedy strategy. The way toward constantly parsing by
eliminating pointless labels. Internet browsers utilize a lexical parser to organize and show
pages with parsing information. JavaScript, HTML, CSS principle hindrance of utilizing the
Lexer parser is that you need extra runtime overhead to produce Lexer tables and make
labels.

CONCLUSION

Lexical analysis is the beginning phase of compiler designing. It even becomes more critical
as it can convert sequence characters into identifiable meanings. Although the world is a
technological village and various innovations and scientific advancements would be made
towards the analysis of contents, it is safe to say that lexical analysis, despite its criticism, is
still doing its job with efficiency and accuracy.

REFERENCE

Donepudi, P. K. (2014a). Technology Growth in Shipping Industry: An Overview. American Journal of
Trade and Policy, 1(3), 137-142. https://doi.org/10.18034/ajtp.v1i3.503

Donepudi, P. K. (2014b). Voice Search Technology: An Overview. Engineering International, 2(2), 91-102.
https://doi.org/10.18034/ei.v2i2.502

Ganapathy, A. (2016). Speech Emotion Recognition Using Deep Learning Techniques. ABC Journal of
Advanced Research, 5(2), 113-122. https://doi.org/10.18034/abcjar.v5i2.550

Ganapathy, A. (2017). Friendly URLs in the CMS and Power of Global Ranking with Crawlers with
Added Security. Engineering International, 5(2), 87-96. https://doi.org/10.18034/ei.v5i2.541

Ganapathy, A. (2018). Cascading Cache Layer in Content Management System. Asian Business
Review, 8(3), 177-182. https://doi.org/10.18034/abr.v8i3.542

Ganapathy, A., & Neogy, T. K. (2017). Artificial Intelligence Price Emulator: A Study on
Cryptocurrency. Global Disclosure of Economics and Business, 6(2), 115-122.
https://doi.org/10.18034/gdeb.v6i2.558

Neogy, T. K., & Paruchuri, H. (2014). Machine Learning as a New Search Engine Interface: An
Overview. Engineering International, 2(2), 103-112. https://doi.org/10.18034/ei.v2i2.539

Paruchuri, H. (2015). Application of Artificial Neural Network to ANPR: An Overview. ABC Journal of
Advanced Research, 4(2), 143-152. https://doi.org/10.18034/abcjar.v4i2.549

Paruchuri, H. (2017). Credit Card Fraud Detection using Machine Learning: A Systematic Literature
Review. ABC Journal of Advanced Research, 6(2), 113-120. https://doi.org/10.18034/abcjar.v6i2.547

Paruchuri, H. (2018). AI Health Check Monitoring and Managing Content Up and Data in CMS
World. Malaysian Journal of Medical and Biological Research, 5(2), 141-146.
https://doi.org/10.18034/mjmbr.v5i2.554

Vadlamudi, S. (2015). Enabling Trustworthiness in Artificial Intelligence - A Detailed
Discussion. Engineering International, 3(2), 105-114. https://doi.org/10.18034/ei.v3i2.519

Vadlamudi, S. (2016). What Impact does Internet of Things have on Project Management in Project based
Firms?. Asian Business Review, 6(3), 179-186. https://doi.org/10.18034/abr.v6i3.520

https://doi.org/10.18034/ajtp.v1i3.503
https://doi.org/10.18034/ei.v2i2.502
https://doi.org/10.18034/abcjar.v5i2.550
https://doi.org/10.18034/ei.v5i2.541
https://doi.org/10.18034/abr.v8i3.542
https://doi.org/10.18034/gdeb.v6i2.558
https://doi.org/10.18034/ei.v2i2.539
https://doi.org/10.18034/abcjar.v4i2.549
https://doi.org/10.18034/abcjar.v6i2.547
https://doi.org/10.18034/mjmbr.v5i2.554
https://doi.org/10.18034/ei.v3i2.519
https://doi.org/10.18034/abr.v6i3.520

Fadziso: Lexical Analysis in Content Management System Details (119-128)

Page 128 Volume 8, No 2/2019 | GDEB

Vadlamudi, S. (2017). Stock Market Prediction using Machine Learning: A Systematic Literature
Review. American Journal of Trade and Policy, 4(3), 123-128. https://doi.org/10.18034/ajtp.v4i3.521

Vadlamudi, S. (2018). Agri-Food System and Artificial Intelligence: Reconsidering Imperishability. Asian
Journal of Applied Science and Engineering, 7(1), 33-42. Retrieved from
https://journals.abc.us.org/index.php/ajase/article/view/1192

--0--

.

https://doi.org/10.18034/ajtp.v4i3.521
https://journals.abc.us.org/index.php/ajase/article/view/1192

