AI-Driven Solutions for Energy Optimization and Environmental Conservation in Digital Business Environments

Authors

  • Aleena Varghese Software Developer, IT WorkForce (Schneider Electric), 127 E Michigan St #100, Indianapolis, IN 46204, USA

DOI:

https://doi.org/10.18034/apjee.v9i1.736

Keywords:

Energy Optimization, Environmental Conservation, Digital Business Environments, Sustainability, Smart Technologies, Renewable Energy, Eco-Friendly Operations

Abstract

The potential of AI-driven solutions for environmental preservation and energy optimization in digital business settings is examined in this paper. The main goals were to investigate how AI technologies may support sustainability, identify major obstacles and opportunities, and evaluate the policy implications for implementation. The approach thoroughly examined the literature, including research articles and case studies, to assess AI's uses in energy optimization and environmental preservation. The main conclusions show how AI technologies can revolutionize energy optimization by enabling intelligent control systems, integrating renewable energy sources, and enabling precision energy optimization. To guarantee successful implementation, constraints, including data quality problems, technological complexity, and ethical issues, need to be resolved. To encourage the ethical and responsible usage of AI-driven solutions for sustainability in digital business environments, regulators and enterprises must work together and establish clear legislative frameworks and incentives for technology adoption. This work generally advances knowledge of the potential and difficulties of utilizing AI technology for energy optimization and environmental preservation in the digital age.

Downloads

Download data is not yet available.

References

Aggour, K. S., Gupta, V. K., Ruscitto, D., Ajdelsztajn, L., Bian, X. (2019). Artificial Intelligence/Machine Learning in Manufacturing and Inspection: A GE Perspective. MRS Bulletin, 44(7), 545-558. https://doi.org/10.1557/mrs.2019.157

Ande, J. R. P. K., & Khair, M. A. (2019). High-Performance VLSI Architectures for Artificial Intelligence and Machine Learning Applications. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 20-30. https://upright.pub/index.php/ijrstp/article/view/121

Bag, S., Gupta, S., Kumar, S., Sivarajah, U. (2020). Role of Technological Dimensions of Green Supply Chain Management Practices on Firm Performance. Journal of Enterprise Information Management, 34(1), 1-27. https://doi.org/10.1108/JEIM-10-2019-0324

Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., Fabio, D. F. (2020). Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. Sustainability, 12(2), 492. https://doi.org/10.3390/su12020492

DeCost, B. L., Hattrick-Simpers, J. R., Trautt, Z., Kusne, A. G., Campo, E. (2020). Scientific AI in Materials Science: A Path to a Sustainable and Scalable Paradigm. Machine Learning: Science and Technology, 1(3). https://doi.org/10.1088/2632-2153/ab9a20

Deming, C., Khair, M. A., Mallipeddi, S. R., & Varghese, A. (2021). Software Testing in the Era of AI: Leveraging Machine Learning and Automation for Efficient Quality Assurance. Asian Journal of Applied Science and Engineering, 10(1), 66–76. https://doi.org/10.18034/ajase.v10i1.88

Farkhani, J. S., Zareein, M., Najafi, A., Melicio, R., Rodrigues, E. M. G. (2020). The Power System and Microgrid Protection—A Review. Applied Sciences, 10(22), 8271. https://doi.org/10.3390/app10228271

Fernoaga, V., Sandu, V., Balan, T. (2020). Artificial Intelligence for the Prediction of Exhaust Back Pressure Effect on the Performance of Diesel Engines. Applied Sciences, 10(20), 7370. https://doi.org/10.3390/app10207370

German, K., Limm, M., Wölfel, M., Helmerdig, S. (2019). Towards Artificial Intelligence Serving as an Inspiring Co-Creation Partner. EAI Endorsed Transactions on Creative Technologies, 6(19). https://doi.org/10.4108/eai.26-4-2019.162609

How, M-L., Cheah, S-M., Khor, A. C., Chan, Y. J. (2020). Artificial Intelligence-Enhanced Predictive Insights for Advancing Financial Inclusion: A Human-Centric AI-Thinking Approach. Big Data and Cognitive Computing, 4(2), 8. https://doi.org/10.3390/bdcc4020008

Khair, M. A. (2018). Security-Centric Software Development: Integrating Secure Coding Practices into the Software Development Lifecycle. Technology & Management Review, 3, 12-26. https://upright.pub/index.php/tmr/article/view/124

Khair, M. A., Ande, J. R. P. K., Goda, D. R., & Yerram, S. R. (2019). Secure VLSI Design: Countermeasures against Hardware Trojans and Side-Channel Attacks. Engineering International, 7(2), 147–160. https://doi.org/10.18034/ei.v7i2.699

Khair, M. A., Mahadasa, R., Tuli, F. A., & Ande, J. R. P. K. (2020). Beyond Human Judgment: Exploring the Impact of Artificial Intelligence on HR Decision-Making Efficiency and Fairness. Global Disclosure of Economics and Business, 9(2), 163-176. https://doi.org/10.18034/gdeb.v9i2.730

Liyanage, S., Bagloee, S. A. (2019). Applications of Artificial Intelligence in Transport: An Overview. Sustainability, 11(1), 189. https://doi.org/10.3390/su11010189

Maddula, S. S. (2018). The Impact of AI and Reciprocal Symmetry on Organizational Culture and Leadership in the Digital Economy. Engineering International, 6(2), 201–210. https://doi.org/10.18034/ei.v6i2.703

Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2019). From Data to Insights: Leveraging AI and Reciprocal Symmetry for Business Intelligence. Asian Journal of Applied Science and Engineering, 8(1), 73–84. https://doi.org/10.18034/ajase.v8i1.86

Mallipeddi, S. R. (2019). Strategic Alignment of AI and Reciprocal Symmetry for Sustainable Competitive Advantage in the Digital Era. Technology & Management Review, 4(1), 23-35. https://upright.pub/index.php/tmr/article/view/128

Marinakis, V., Doukas, H., Koasidis, K., Albuflasa, H. (2020). From Intelligent Energy Management to Value Economy through a Digital Energy Currency: Bahrain City Case Study. Sensors, 20(5), 1456. https://doi.org/10.3390/s20051456

Mullangi, K. (2017). Enhancing Financial Performance through AI-driven Predictive Analytics and Reciprocal Symmetry. Asian Accounting and Auditing Advancement, 8(1), 57–66. https://4ajournal.com/article/view/89

Mullangi, K., Maddula, S. S., Shajahan, M. A., & Sandu, A. K. (2018). Artificial Intelligence, Reciprocal Symmetry, and Customer Relationship Management: A Paradigm Shift in Business. Asian Business Review, 8(3), 183–190. https://doi.org/10.18034/abr.v8i3.704

Sandu, A. K., Surarapu, P., Khair, M. A., & Mahadasa, R. (2018). Massive MIMO: Revolutionizing Wireless Communication through Massive Antenna Arrays and Beamforming. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 22-32. https://upright.pub/index.php/ijrstp/article/view/125

Shajahan, M. A. (2018). Fault Tolerance and Reliability in AUTOSAR Stack Development: Redundancy and Error Handling Strategies. Technology & Management Review, 3, 27-45. https://upright.pub/index.php/tmr/article/view/126

Sharma, K., Malik, A., Batra, I. (2020). An AI-Based Framework for Energy Efficiency in Smart Homes. NeuroQuantology, 18(7), 2733 - 2743. https://doi.org/10.14704/nq.2022.20.7.NQ33351

Tanveer, M., Hassan, S., Bhaumik, A. (2020). Academic Policy Regarding Sustainability and Artificial Intelligence (AI). Sustainability, 12(22), 9435. https://doi.org/10.3390/su12229435

Wamba-Taguimdje, S-L.., Wamba, S. F., Kamdjoug, J. R. K., Wanko, C. E. T. (2020). Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-based Transformation Projects. Business Process Management Journal, 26(7), 1893-1924. https://doi.org/10.1108/BPMJ-10-2019-0411

Wang, G., Li, Z., Ji, Y. (2020). Energy and Transmission Efficiency Enhancement in Passive Optical Network Enabled Reconfigurable Fronthaul Supporting Smart Homes. Sensors, 20(21), 6245. https://doi.org/10.3390/s20216245

Yerram, S. R. (2021). Driving the Shift to Sustainable Industry 5.0 with Green Manufacturing Innovations. Asia Pacific Journal of Energy and Environment, 8(2), 55-66. https://doi.org/10.18034/apjee.v8i2.733

Yerram, S. R., & Varghese, A. (2018). Entrepreneurial Innovation and Export Diversification: Strategies for India’s Global Trade Expansion. American Journal of Trade and Policy, 5(3), 151–160. https://doi.org/10.18034/ajtp.v5i3.692

Yerram, S. R., Mallipeddi, S. R., Varghese, A., & Sandu, A. K. (2019). Human-Centered Software Development: Integrating User Experience (UX) Design and Agile Methodologies for Enhanced Product Quality. Asian Journal of Humanity, Art and Literature, 6(2), 203-218. https://doi.org/10.18034/ajhal.v6i2.732

Yigitcanlar, T., Desouza, K. C., Butler, L., Roozkhosh, F. (2020). Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies, 13(6), 1473. https://doi.org/10.3390/en13061473

Downloads

Published

2022-06-30

How to Cite

Varghese, A. (2022). AI-Driven Solutions for Energy Optimization and Environmental Conservation in Digital Business Environments. Asia Pacific Journal of Energy and Environment, 9(1), 49-60. https://doi.org/10.18034/apjee.v9i1.736

Similar Articles

1-10 of 73

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)