Data Analytics for Enhanced Business Intelligence in Energy-Saving Distributed Systems

Authors

  • Srinikhita Kothapalli Sr. Software Engineer, Anagha Solutions Inc., Leander, Texas 78641, USA

DOI:

https://doi.org/10.18034/apjee.v9i2.781

Keywords:

Data Analytics, Business Intelligence, Energy-Saving, Distributed Systems, Energy Optimization, Energy Efficiency, Smart Grids, Sustainability

Abstract

This research examines how data analytics might improve Business Intelligence (BI) in energy-saving distributed systems to improve energy management and sustainability. Secondary data-based reviews synthesize literature on data analytics frameworks, data processing methods, and BI tactics in distributed energy scenarios. According to critical results, descriptive, diagnostic, predictive, and prescriptive analytics turn raw data into energy-efficient insights. Descriptive and diagnostic analytics highlight historical trends and inefficiencies, whereas predictive and prescriptive methods maximize resource allocation and real-time decision-making. Adaptive energy management requires robust BI frameworks with centralized data warehousing, visualization, and real-time analytics. However, enormous data volume, real-time processing limits, data security, and lack of standards limit these analytics' usefulness. Policy guidelines should include cybersecurity safeguards, AI and edge computing integration incentives, and standardized protocols to improve data processing and system interoperability. These findings demonstrate the importance of data-driven BI in improving energy efficiency and sustainability in distributed energy systems and meeting global energy targets.

Downloads

Download data is not yet available.

References

Al Shibli, M., Mathew, B. (2019). Artificial Intelligent Machine Learning and Big Data Mining of Desert Geothermal Heat Pump: Analysis, Design and Control. International Journal of Intelligent Systems and Applications, 13(4), 1. https://doi.org/10.5815/ijisa.2019.04.01 DOI: https://doi.org/10.5815/ijisa.2019.04.01

Chien, C-f., Cho, S., Li, X., Lee, C-y. (2014). Big Data Analytics for Systems Control and Decision Making in Services and Manufacturing. Flexible Services and Manufacturing Journal, 26(3), 460-461. https://doi.org/10.1007/s10696-014-9195-x DOI: https://doi.org/10.1007/s10696-014-9195-x

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776 DOI: https://doi.org/10.18034/apjee.v6i2.776

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770 DOI: https://doi.org/10.18034/abcjar.v10i2.770

Goda, D. R. (2020). Decentralized Financial Portfolio Management System Using Blockchain Technology. Asian Accounting and Auditing Advancement, 11(1), 87–100. https://4ajournal.com/article/view/87

Hassani, H., Huang, X., Silva, E. (2019). Big Data and Climate Change. Big Data and Cognitive Computing, 3(1), 12. https://doi.org/10.3390/bdcc3010012 DOI: https://doi.org/10.3390/bdcc3010012

Kamisetty, A., Onteddu, A. R., Kundavaram, R. R., Gummadi, J. C. S., Kothapalli, S., Nizamuddin, M. (2021). Deep Learning for Fraud Detection in Bitcoin Transactions: An Artificial Intelligence-Based Strategy. NEXG AI Review of America, 2(1), 32-46.

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kiyamov, I. K., Sabitov, L. S., Kabirova, G. I., Akhtyamova, L. Sh., Iskhakova, L. Sh. (2019). Current Issues of Resource and Energy Savings in the Domestic Oil and Gas Complex. IOP Conference Series. Materials Science and Engineering, 570(1). https://doi.org/10.1088/1757-899X/570/1/012055 DOI: https://doi.org/10.1088/1757-899X/570/1/012055

Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123 DOI: https://doi.org/10.18034/ajase.v8i1.123

Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97

Kothapalli, S. (2021). Blockchain Solutions for Data Privacy in HRM: Addressing Security Challenges. Journal of Fareast International University, 4(1), 17-25. https://jfiu.weebly.com/uploads/1/4/9/0/149099275/2021_3.pdf

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672

Majeed, A., Shah, M. A. (2015). Energy Efficiency in Big Data Complex Systems: A Comprehensive Survey of Modern Energy Saving Techniques. Complex Adaptive Systems Modeling, 3(1), 1-29. https://doi.org/10.1186/s40294-015-0012-5 DOI: https://doi.org/10.1186/s40294-015-0012-5

Mallipeddi, S. R. (2022). Harnessing AI and IoT Technologies for Sustainable Business Operations in the Energy Sector. Asia Pacific Journal of Energy and Environment, 9(1), 37-48. https://doi.org/10.18034/apjee.v9i1.735 DOI: https://doi.org/10.18034/apjee.v9i1.735

Manikyala, A. (2022). Sentiment Analysis in IoT Data Streams: An NLP-Based Strategy for Understanding Customer Responses. Silicon Valley Tech Review, 1(1), 35-47.

Melnik, A., Ermolaev, K., Kuzmin, M. (2019). Requirements for Companies’ Energy Saving Programs under the Conditions of Digitalization of Russian Economy. IOP Conference Series. Materials Science and Engineering, 497(1). https://doi.org/10.1088/1757-899X/497/1/012080 DOI: https://doi.org/10.1088/1757-899X/497/1/012080

Meng, Y., Yang, Y., Chung, H., Pil-Ho, L., Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12), 4779. https://doi.org/10.3390/su10124779 DOI: https://doi.org/10.3390/su10124779

Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98

Peng, Y., Peng, L., Zhou, P., Yang, J., Rahman, Sk. Md. M. (2017). Exploiting Energy Efficient Emotion-Aware Mobile Computing. Mobile Networks and Applications, 22(6), 1192-1203. https://doi.org/10.1007/s11036-017-0865-2 DOI: https://doi.org/10.1007/s11036-017-0865-2

Preda, S., Oprea, S-V., Bâra, A., Belciu, A. (2018). PV Forecasting Using Support Vector Machine Learning in a Big Data Analytics Context. Symmetry, 10(12), 748. https://doi.org/10.3390/sym10120748 DOI: https://doi.org/10.3390/sym10120748

Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163

Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771 DOI: https://doi.org/10.18034/apjee.v8i2.771

Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164

Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159

Young-Myoung, K., Jung, D., Chang, Y., Choi, D-H. (2019). Intelligent Micro Energy Grid in 5G Era: Platforms, Business Cases, Testbeds, and Next Generation Applications. Electronics, 8(4), 468. https://doi.org/10.3390/electronics8040468 DOI: https://doi.org/10.3390/electronics8040468

Downloads

Published

2022-12-31

How to Cite

Kothapalli, S. (2022). Data Analytics for Enhanced Business Intelligence in Energy-Saving Distributed Systems. Asia Pacific Journal of Energy and Environment, 9(2), 99-108. https://doi.org/10.18034/apjee.v9i2.781

Similar Articles

11-20 of 72

You may also start an advanced similarity search for this article.