Isoprenoids and Fatty Acids Derivatives from the Chloroform Fraction of the Antimycobacterial Methanol Extract *Ximeniaamericana* Lam. (Olacaceae) Stem Bark

O zadheoghene Eriarie Afiero ho1*, L. Lawson2, Nnamdi Emenyonu3

1Department of Pharmacognosy and Phytotherapy, University of Port Harcourt, NIGERIA
2Tuberculosis Research Laboratory, Zankli Medical Centre, Abuja, NIGERIA
3Email for Correspondence: ozadheoghene.afieroaho@uniport.edu.ng

**ABSTRACT**

This study investigated the triterpenoids and fatty acid derivatives, and the *in vitro* growth inhibitory effect against clinical strains of *Mycobacteria tuberculosis* of the stem bark of *Ximenia Americana* plant widely used in ethno-medicine for the treatment of bacterial and skin infections, poison, post-partum hemorrhage, anaemia, and dysentery. The macerated methanol extract (XAM) of the stem bark was evaluated for anti-tuberculosis activity using the Lowenstein Jensen method against de-contaminated clinical strains of *Mycobacterium tuberculosis*. The XAM was fractionated by open column chromatography on a normal phase silica gel column with a 25 % stepwise gradient of chloroform-methanol as mobile phase. The constituents of the non-polar column fractions eluted with 100% chloroform were characterized using Gas Chromatography-Mass spectroscopic (GC-MS) techniques and by comparison with reference NIST library compound. The XAM (5 mg/mL) inhibited the growth of the *Mycobacterium tuberculosis*. GC-MS analysis of the non-polar column fractions afforded Two lupane-type triterpenoids: Lup-20-(29)-en-3-one (15) and lupeol (16), three phytosteroids: campesterol (11), stigmasterol (12) and gamma-sitosterol (14), one friedelane-type triterpenoid: Friedelan-3-one (8), one oleanane-type triterpenoid: 12-oleanen-3-one (13), and the fatty acids: Palmatic acid methyl ester (1), Palmitic acid (2), 11-octadecenoic acid methyl ester (3), Octadecanoic acid methyl ester (4), Cis-13-Octadecenoic acid (5), 10,13-Octadecadiynoic acid methyl ester (6), Docosanoic acid (7), Tetracosanoic acid (9), and Hexacosanoic acid methyl ester (10). The presence of these bioactive triterpenoids and fatty acids could offer an explanation for the ethno-medicinal uses of this plant. Further work is on-going to isolate in pure form, and characterized the bioactive constituents in the XAM with the view of discovery lead compounds for the treatment of tuberculosis and associated opportunistic bacterial infections.

**Key words**: *Ximenia americana*, isorenoids, fatty acids, tuberculosis, drug discovery

INTRODUCTION

The worrisome global health challenge of drug resistant tuberculosis infections is making attention to be shifted to the use of the rich forest bio-diversities to combat this disease. Plant derived isoprenoids commonly called terpenoids and fatty acids are not only useful as chemosytemic markers, several of them are increasingly being reported to have potential as leads in the development of newer drugs for the treatment of diseases. Several plant derived isoprenoids with anti-tuberculosis activity have been documented (Cantrell et al 2001; Higuchi et al 2008; Akihisael et al 2005; Mann et al 2011). The Olacaceae family of plants of which *Ximenia Americana* is a specie, is known to contain bioactive triterpenoids and fatty acids derivatives. *Ximenia americana* commonly called tallow wood, yellow plum or sea lemon, is a small sprawling tree of woodlands widely distributed in the tropical region of Africa and America (Pott and Pott, 1994; Uchóaet al 2016). The lemon-yellow or orange-red fruits have a pleasant plum-like flavor. In Asia, the young leaves are cooked as a vegetable though with high cyanide as anti-nutrients. Virtually all its morphological parts are used in ethno-medicine (James et al 2008; Braga 1960). Preparations from the roots are...
used to treat rheumatism (Meyet al 2006), fever, jaundice, headaches, irregular menstrual flow, gastric disorders and as antiseptic (Uchọa et al 2016) while that from the leaves are used as laxative and in the treatment of measles (Omer and Elnima, 2003). The flowers infusion is used to reduce bloody diarrhea (Braga 1960). Scientific validation of its anticancer and antineoplastic (Voss et al 2006), antimicrobial (Omer and Elnima, 2003; Geyidet al 2005; Konétet al 2004; Kawoet al 2011; Da Silva et al 2015), antipyretic (Soro et al 2009), radical scavenging (Maikai et al 2010; Le et al 2012) and pesticidal (Fatope et al 2000) have been documented. Literature on the phytochemistry of the roots (Fatope et al 2000), leaves and stem (Uchọa et al 2016) are documented. The root also contains the fatty acids: tariric acid and 10Z, 14E, 16E-octadec-14, 14, 16-triene-12-ynoic acid (Fatope et al 2000). This present study reports on the anti-mycobacterial effects and the Gas Chromatography-Mass spectroscopy (GC-MS) characterisation of isoprenoids and fatty acids from the stem bark of *Ximenia americana*.

**MATERIALS AND METHODS**

The *Ximenia americana* stem bark were collected from the farmlands in Chaza Village, Suleja, Niger State Nigeria and authenticated at the Herbarium of the National Institute for Pharmaceutical Research and Development, Idu, Abuja, Nigeria. A voucher specimen (NIPRD/H/6417) has been deposited at the herbarium of the same institute.

**Preparation of the crude methanol extract**

The cold maceration extraction technique was used. The powdered dried plant material was macerated in absolute methanol for 72 hours and filtered to obtain the methanol filtrate. The residue was then repeatedly extracted with more portions of the methanol until a colorless extract was obtained. This is to achieve exhaustive extraction. The methanol filtrates were pooled together and concentrated by evaporation to dryness using a rotary evaporator. The weights of the dried crude methanol extract (XAM) was noted.

**Antimycobacterial susceptibility test**

The agar dilution method using the egg-enriched Lowenstein-Jensen (LJ) medium (Jensen 1955) was used. Briefly, the 500 mg of the dried methanol extract of *Ximenia americana* stem bark was dissolved in 4 ml dimethyl sulfoxide and diluted to 100 ml with the egg-enriched Lowenstein-Jensen (LJ) medium to give a final test concentration of 5 mg/ml. Isoniazid (10 ml of 200 μg/ml re-constituted to 100ml with the egg-enriched LJ medium), and dicyclohexylcarbodiimide (10 ml of 800 μg/ml re-constituted in the egg-enriched LJ medium) were used as standard control drugs at respective final concentrations of 0.2, and 0, 8.0 μg/ml. 20 ml of the LJ medium on which the test sample/standard drug have been incorporated were poured into separate slant bottles which have been previously sterilized to form slants. De-contaminated clinical *Mycobacterium tuberculosis* isolate (positive to NOx reduction, negative catalase labile test and shows the presence of serpentinous cords on zinc smear) diluted in sterile water to 10^{-2} and 10^{-4}; corresponding to 1.0 and 0.5 McFarland respectively was used for inoculation. A 10.0 μl aliquot of each inoculants concentrations (10^{-2} and 10^{-4}) was inoculated, in triplicates, into separate standard drugs, XAM and negative control LJ media slants and incubated for six weeks at 37 °C. Inoculated media were checked after three days for non-*Mycobacterium. Tuberculosis* contamination and subsequently monitored weekly for growth. Colony counting was done following the International Union against Tuberculosis guideline.

**Preparation of the isoprenoid and fatty acid rich extract**

The methanol extract (XAM) obtained was then fractionated by eluting with chloroform using column chromatography packed with normal phase silica gel (Mesh 60-120) as adsorbent. The pooled fraction eluted with the chloroform was dried to obtained the triterpenoid and fatty acid rich extract XAC.

**Phytochemical screening**

Confirmatory phytochemical tests for C-30 Isoprenoids (triterpenoids and steroids) were carried out on the XAC using the standard Lieberman-Buchard and Salkowskis phytochemical tests (Harborne 1998; Houghton and Raman 1999).

**GC-MS Characterization of the triterpenoid and fatty acids constituents:**

This was done on the XAC dissolved in chloroform using an Agilent gas chromatograph Model 6890, coupled to a Mass spectrometer equipped with a DB DB-1MS capillary column (30 m long × 320 μm nominal diameter), programmed from 120 °C (5 min) to 250 °C at 3°C/min, with 5 min hold time. Helium was used as carrier gas (1.0 ml/min) with sample injection in split mode (50:1). Injector and detector temperature were 250 and 280 °C respectively. The Mass spectrometer worked in electron impact mode at 70 eV with electron multiplier at 1600 V and ion source temperature at 180 °C. Mass spectra data were acquired in the scan mode in m/z range 50-550. The compounds characterized in XAC were identified by comparing their mass spectra, match factor (MF), reverse match factor (RMF), quality factor and retention times with those of reference compounds in the NIST library (Swigar and Silverstein 1981; Adams 1989). A MF or RMF of 900 or greater is an excellent match; 800–900, a good match; 700–800, a fair match. Less than 600 is a very poor match (Stein 2011). A quality factor > 80 % and MF/RMF > 800 was used as criterion for acceptance in this study.

**Results**

Antimycobacterial susceptibility test (see Table 1): The XAM(yield 18.5 % w/w) showed a promising growth inhibition effects at the test concentration (5 mg/ml) with less than 19 colonies growth units at 1.0 McFarland and a no colony growth
at 0.5 Mcfarland inoculum concentration of the *M. tuberculosis*. The observed no colony growth at both 1.0 and 0.5 Mcfarland inoculum concentrations for the two standard drugs and the observed growth for the negative control is indicative that the *M. tuberculosis strains* used is viable and susceptible to both the standard drugs and the XAM.

### Table 1: Antimycobacterial susceptibility test

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Description of sample</th>
<th>Final test concentration</th>
<th>Weekly observation report on inoculum growth</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg-Gly-LJ</td>
<td>Negative control</td>
<td>Not applicable</td>
<td>G G G G G G 3+ G G G G G G 1+</td>
<td>Viable inoculum</td>
</tr>
<tr>
<td>INH</td>
<td>Standard drug isoniazid</td>
<td>0.2 µg/ml</td>
<td>- - - - - - - - - - - - - -</td>
<td>INH susceptible</td>
</tr>
<tr>
<td>DHS</td>
<td>Standard drug dibehydrostreptomycin</td>
<td>8.0 µg/ml</td>
<td>- - - - - - - - - - - - - -</td>
<td>DHS susceptible</td>
</tr>
<tr>
<td>XAM</td>
<td><em>Ximenia Americana</em> bark methanol extract</td>
<td>5.0 mg/ml</td>
<td>- - - - - - - - - - - - - -</td>
<td>Susceptible</td>
</tr>
</tbody>
</table>

**Key:** - = No inoculum growth observed, ++ = 1-19 colonies growth observed, + = 20-100 colonies growth observed, +++ = 100-200 colonies growth observed, ++++ = 200-500 colonies growth observed, ++++ = > 500 confluent growth and G = observable on set of growth but were not quantified until the 6th week.

GC-MSCharacterisation of chloroform fraction (XAC) of the anti-mycobacterial stem bark methanol extract of *X. americana* (See Table 2 and Figure 1): Two lupane-type triterpenoids: L-up-20-39-en-3-one (15) and lupeol (16), three phytosteroids: phytosterol (11), stigmasterol (12) and gamma-sitosterol (14), one fridelan-type triterpenoid: Friedelan-3-one (8), one oleanane-type triterpenoid: 12-oleanen-3-one (13), and the fatty acids: Palmitic acid methyl ester (1), Palmitic acid (2), 11-octadecenoic acid methyl ester (3), Octadecanoic acid methyl ester (4), Cis-13-Octadecenoic acid (5), 10,13-octadecadiynoic acid methyl ester(6), Docosanoic acid (7), Tetrasanoic acid (9), and Hexacosanoic acid methyl ester (10). These accounted for constituents corresponding to 73.22 % of the total peak area.

### Table 2: GC-MS analysis the chloroform fraction of the anti-mycobacterial stem bark methanol extract of *X. americana*

<table>
<thead>
<tr>
<th>S/N</th>
<th>Compound Name</th>
<th>Class</th>
<th>Match Factor MF</th>
<th>Reverse Match factor RMF</th>
<th>Rt (min)</th>
<th>% Area</th>
<th>Quality Molecular Formula</th>
<th>Molecular ion (m/z) (% abundance)</th>
<th>Base peak (m/z) (% abundance)</th>
<th>Selected diagnostic Fragments (m/z) (abundance) [fragment]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Palmitic acid methyl ester</td>
<td>Saturated fatty acid ester</td>
<td>942</td>
<td>942</td>
<td>18.89</td>
<td>2.96</td>
<td>95</td>
<td>C17H34O2</td>
<td>279(18.4)</td>
<td>74(100)</td>
</tr>
<tr>
<td>2</td>
<td>Palmitic acid</td>
<td>Saturated fatty acid</td>
<td>917</td>
<td>924</td>
<td>21.16</td>
<td>6.71</td>
<td>96</td>
<td>C17H34O2</td>
<td>256(50)</td>
<td>73(100)</td>
</tr>
<tr>
<td>3</td>
<td>11-octadecenoic acid methyl ester</td>
<td>Mono-unsaturated fatty acid ester</td>
<td>942</td>
<td>943</td>
<td>23.97</td>
<td>5.75</td>
<td>99</td>
<td>C18H36O2</td>
<td>298(10)</td>
<td>58(100)</td>
</tr>
<tr>
<td>4</td>
<td>Octadecanoic acid, methyl ester</td>
<td>Saturated fatty acid ester</td>
<td>883</td>
<td>908</td>
<td>24.84</td>
<td>0.57</td>
<td>98</td>
<td>C18H36O2</td>
<td>258(20)</td>
<td>74(100)</td>
</tr>
<tr>
<td>5</td>
<td>Cis-13-Octadecenoic acid methyl ester</td>
<td>Saturated fatty acid ester</td>
<td>929</td>
<td>933</td>
<td>26.17</td>
<td>9.91</td>
<td>97</td>
<td>C18H36O2</td>
<td>282(7)</td>
<td>59(100)</td>
</tr>
<tr>
<td>6</td>
<td>10,13-octadecadiynoic acid methyl ester</td>
<td>Saturated fatty acid ester</td>
<td>829</td>
<td>833</td>
<td>25.17</td>
<td>1.78</td>
<td>99</td>
<td>C20H38O2</td>
<td>299(204)</td>
<td>93(100)</td>
</tr>
<tr>
<td>7</td>
<td>Docosanoic acid</td>
<td>Saturated fatty acid</td>
<td>822</td>
<td>870</td>
<td>36.68</td>
<td>0.55</td>
<td>99</td>
<td>C22H44O2</td>
<td>348(97)</td>
<td>57(100)</td>
</tr>
<tr>
<td>8</td>
<td>Friedelan-3-one</td>
<td>Triterpene ketone</td>
<td>929</td>
<td>928</td>
<td>49.03</td>
<td>4.05</td>
<td>99</td>
<td>C25H42O2</td>
<td>434(56)</td>
<td>69(100)</td>
</tr>
<tr>
<td>9</td>
<td>Tetracosanoic acid</td>
<td>Saturated fatty acid</td>
<td>837</td>
<td>855</td>
<td>41.37</td>
<td>0.83</td>
<td>86</td>
<td>C24H48O2</td>
<td>568(100)</td>
<td>568(100)</td>
</tr>
<tr>
<td>10</td>
<td>Hexacosanoic acid</td>
<td>Saturated fatty acid ester</td>
<td>830</td>
<td>870</td>
<td>44.74</td>
<td>0.69</td>
<td>97</td>
<td>C26H50O2</td>
<td>456(57)</td>
<td>74(100)</td>
</tr>
<tr>
<td>11</td>
<td>Campesterol</td>
<td>Phytoester</td>
<td>836</td>
<td>883</td>
<td>49.09</td>
<td>1.07</td>
<td>90</td>
<td>C20H38O2</td>
<td>400(100)</td>
<td>499(100)</td>
</tr>
<tr>
<td>12</td>
<td>Stigmasterol</td>
<td>Phytoester</td>
<td>858</td>
<td>873</td>
<td>49.07</td>
<td>3.09</td>
<td>99</td>
<td>C25H42O2</td>
<td>424(106)</td>
<td>55(100)</td>
</tr>
<tr>
<td>13</td>
<td>12-octadec-3-one</td>
<td>Triterpene ketone</td>
<td>847</td>
<td>871</td>
<td>56.38</td>
<td>0.93</td>
<td>97</td>
<td>C26H40O2</td>
<td>424(105)</td>
<td>248(100)</td>
</tr>
<tr>
<td>14</td>
<td>Gamma-sitosterol</td>
<td>Phytoester</td>
<td>878</td>
<td>902</td>
<td>52.02</td>
<td>36.15</td>
<td>66</td>
<td>C26H40O2</td>
<td>441(100)</td>
<td>441(100)</td>
</tr>
<tr>
<td>15</td>
<td>Lup-2029-3-one</td>
<td>Triterpene ketone</td>
<td>814</td>
<td>842</td>
<td>52.34</td>
<td>4.89</td>
<td>93</td>
<td>C26H40O2</td>
<td>441(40)</td>
<td>205(100)</td>
</tr>
<tr>
<td>16</td>
<td>Lupeol</td>
<td>Lупane-type triterpene alcohol</td>
<td>881</td>
<td>919</td>
<td>52.94</td>
<td>5.81</td>
<td>98</td>
<td>C26H40O2</td>
<td>426(100)</td>
<td>189(100)</td>
</tr>
</tbody>
</table>

% Total identified constituents: 73.22.
DISCUSSION

Plant derived isoprenoids includes both terpenoids and steroids and are highly ubiquitous in plants with diverse biological and ecological properties. They are also used as chemosystemic markers. Several Plant derived lipids are of significance in nutrition, health, cosmetology and as biofuels. Dietary unsaturated fatty acids are essential to human health due to their role as precursors to the eicosanoids. They help in the lowering of plasma cholesterol thereby reducing the risk associated with cardiovascular health. This is a contrast to animal derived lipids. Mono unsaturated fatty acids like palmitoleic acids have been reported to increase insulin sensitivity by suppressing inflammation and inhibiting the destruction of insulin secreting pancreatic beta cells (Yang et al. 2011). Fatty acids derivatives of plant origin are also utilised as vehicle for drug delivery (Okorie et al. 2010). The docosanoates commonly referred to as behenates are saturated fatty acids derivatives like the stearates. Both are used as surfactants, lubricants and in cosmetology. Behenates have been reported to have a hypercholesterolemic effects (Cater and Denke 2001). The presence of friedelin, the lupane-type Triterpenoids : Lupeol, and Lup-20(29)-en-3-one, as well as the oleanane-type triterpenoid: 12-olean-en-3-one could explain the observed anti-mycobacterial activity of the XAM as friedelin (Akihisa et al. 2005; Mann et al. 2011), several lupaneand oleanane-type triterpenoids (Cantrell et al. 2001; Higuchi et al. 2008; Akihisa et al. 2005) have been reported to have anti-tuberculosis activity in vitro. The presence of Phytosterols like campesterol, stigmasterol and sitosterol, have been reported to have cholesterol lowering effects (Rudkowska 2008; Heggen 2010).

CONCLUSION

This work reports for the first time the anti-tuberculosis effect of the stem bark of *Ximenia americana* plant widely used in ethnomedicine. It also reported the characterization of bioactive saturated and unsaturated fatty acids derivatives and isoprenoids which could offer a rationale for nutritional and health benefits of this plant. Further work is on-going to isolate in the pure form the anti-mycobacterial constituents and elucidate the structure of same using spectroscopic techniques.

ACKNOWLEDGEMENT

The Central Chemistry Laboratory of the Usman Dan Fodio University, Sokoto, Nigeria is acknowledged for making Gas Chromatography-Mass Spectrometry facility available for this work.
REFERENCES


Pott, A, Pott, VJ. (1994). Plantas do Pantanal; Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária do Pantanal, Corumbá – MatoGrosso, Brazil.


Afteroho et al. Isoprenoids and Fatty Acids Derivatives from the Chloroform Fraction of the Antimycobacterial Methanol Extract Ximeniaamericana Lam. (Olacaceae) Stem Bark


-- 0 --