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ABSTRACT 

In recent years, there has been an uptick in interest in generative models for molecules in drug 
development. In the field of de novo molecular design, these models are used to make molecules with 
desired properties from scratch. This is occasionally used instead of virtual screening, which is limited 
by the size of the libraries that can be searched in practice. Rather of screening existing libraries, 
generative models can be used to build custom libraries from scratch. Using generative models, which 
may optimize molecules straight towards a desired profile, this time-consuming approach can be sped 
up. The purpose of this work is to show how current shortcomings in evaluating generative models for 
molecules can be avoided. We cover both distribution-learning and goal-directed generation with a 
focus on the latter. Three well-known targets were downloaded from ChEMBL: Janus kinase 2 (JAK2), 
epidermal growth factor receptor (EGFR), and dopamine receptor D2 (DRD2) (Bento et al. 2014). We 
preprocessed the data to get binary classification jobs. Before calculating a scoring function, the data is 
split into two halves, which we shall refer to as split 1/2. The ratio of active to inactive users. Our goal 
is to train three bioactivity models with equal prediction performance, one to be used as a scoring 
function for chemical optimization and the other two to be used as performance evaluation models. Our 
findings suggest that distribution-learning can attain near-perfect scores on many existing criteria even 
with the most basic and completely useless models. According to benchmark studies, likelihood-based 
models account for many of the best technologies, and we propose that test set likelihoods be included 
in future comparisons. 
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INTRODUCTION 

Segler et al. (2018); Gomez-Bombarelli et al. (2018); Sanchez-Lengeling and Aspuru-Guzik (2018) and Olivecrona et al. 
(2017) have all noted a rise in interest in generative models for molecules in drug discovery in recent years. Those 
models are used to produce molecules with desired attributes from scratch in the field of de novo molecular design 
(Schneider 2013). This is sometimes considered as a replacement for virtual screening, which is constrained by the size 
of the libraries that can be searched in practice. Rather than screening existing libraries, generative models can be used 
to construct targeted libraries from the ground up (Segler et al. 2018). They can also help with lead optimization, which 
entails finding a small number of compounds with optimal profiles. Potency, metabolic stability, physicochemical 
characteristics, and permeability are just a few of the dimensions that can be included in a profile (Bynagari, 2016). 
This time-consuming procedure can be sped up by using generative models, which can optimize molecules straight 
towards a desired profile (Donepudi, 2018). 
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Machine learning (ML), specifically Deep Learning, is used to create new generative models for molecules 
(Schmidhuber 2015; LeCun, Bengio, and Hinton 2015). More traditional approaches (Venkatasubramanian, Chan, and 
Caruthers 1994; Douguet, Thoreau, and Grassy 2000; Jensen 2019) are complemented by these. The capacity of machine 
learning technologies to learn what viable compounds look like from data is their key advantage over traditional 
approaches. To achieve this, machine learning methods employ a training set of molecules from which they attempt 
to deduce the data's underlying distribution. The learned distribution is then utilized to create new molecules, with 
different approaches differing in the specifics of how the creation process is carried out. 

The SMILES (Weininger 1988) representation of chemicals was utilized in tandem with recurrent neural networks 
(RNNs) (Hochreiter and Schmidhuber 1997; Cho et al. 2014) in the first wave of Deep Learning methods for molecule 
production (Segler et al. 2018; Gomez-Bombarelli et al. 2018). 

More recent versions of these models, such as DeepSmiles (O'Boyle and Dalke 2018) or SELFIES (Krenn et al. 2020), 
have progressed toward more robust line notations of chemical structure. Graph neural networks are used in another 
set of models to directly build molecular graphs (Scarselli et al. 2009). Models differ in terms of training technique and 
model architecture, in addition to the representation used. See (Sanchez-Lengeling and Aspuru-Guzik 2018; Elton et 
al. 2019) for a more extensive discussion of current techniques. Models differ in terms of training technique and model 
architecture, in addition to the representation used. See (Sanchez-Lengeling and Aspuru-Guzik 2018; Elton et al. 2019) 
for a more extensive discussion of current techniques. 

Distribution-learning and goal-directed generation are the two most common applications of generative models for 
molecules (Brown et al. 2019). The task of producing molecules that look like a given set of molecules in distribution 
is dealt with by distribution-learning. The goal of goal-directed generation is to create molecules with a certain set of 
qualities, such as physical/chemical properties, bioactivities, or a combination of these (Fadziso & Manavalan, 2017; 
Manavalan, 2016). 

Models based on distribution-learning can be used to produce chemical libraries or as a jumping off point for goal-
directed generation. Recent efforts to set benchmarks for their evaluation (Preuer et al. 2018; Brown et al. 2019; 
Polykovskiy et al. 2018) have shown that evaluating these models can be difficult. These benchmarks frequently 
include algorithms that attempt to capture desired aspects of the created molecules, such as comparing the 
distributions of different chemical attributes. However, simple models can fool many of these heuristics. 

Goal-directed generative models for molecules are trained to generate molecules with a specific property profile, such 
as physical or chemical properties, bioactivities, or a combination of the three. Kusner, Paige, and Hernandez-Lobato 
(2017) assessed a number of such models for their capacity to generate compounds with a high penalized logP score 
(You et al. 2019; Zhou et al. 2018; Zhang et al. 2019). It is important to highlight, however, that producing lengthy 
saturated hydrocarbon chains is a simple way to attain state-of-the-art outcomes. Brown et al. (2019) developed the 
GuacaMol package, which helped to improve evaluation. However, we agree with the authors that the benchmarks 
are simple to solve and that the quality of the compounds generated is not well addressed (Manavalan, 2018). 

A scoring function is usually used in conjunction with a goal-directed molecule generator to determine how closely a 
molecule matches the desired profile. Unfortunately, developing a decent scoring function for many jobs is difficult, 
because this function must assess a molecule's biological effects as well as synthetic feasibility and drug-likeness, all 
of which are difficult to define (Bickerton et al. 2012; Ertl and Schuffenhauer 2009). The majority of scoring functions 
used in practice do not take into account practitioners' intuitive limits. As a result, a molecular generator may optimize 
the scoring function in ways that were not intended. When machine learning models are used as scoring functions, the 
problem becomes even worse.  

Despite a flood of papers describing innovative approaches to molecule creation, wet-lab validations of generative 
models are still rare. In vitro activity of compounds created using transfer learning (Segler et al. 2018) was 
demonstrated by Merk, Friedrich, et al. (2018) and Merk, Grisoni, et al. (2018). Using generative Deep Learning models, 
Zhavoronkov et al. (2019) found a DDR1 kinase inhibitor. What these studies don't show is how "innovative" the 
proposed approaches are, or how well they would perform in compared to chemists designing compound libraries 
using more traditional methods. We anticipate that as the field evolves, such comparisons will become increasingly 
common. 

Objectives of the Study 

The goal of this paper is to illustrate present flaws in evaluating generative models for molecules. With a focus on the 
latter, we address both distribution-learning and goal-directed generation. 
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LITERATURE REVIEW 

Mechanisms of failure in distribution-learning 

First, we examine the shortcomings of existing metrics for distribution-learning and show that many of them can be 
easily fooled by a model that only modifies the molecules in the training set little. 

Segler et al. (2018) and Li et al. (2018), variational auto-encoders (Gomez-Bombarelli et al. 2018; Kusner, Paige, and 
Hernandez-Lobato 2017; Jin, Barzilay, and Jaakkola 2018), generative adversarial networks (Guimaraes et al. 2017; 
Sanchez-Lengeling, Outeiral, et al. 2018), and generative adversarial previously, only a few criteria were used to 
evaluate performance in distribution-learning studies, such as visual inspection, novelty, and validity. Checking the 
originality of generated compounds is the most common method for identifying duplication of molecules in the 
training set. Because it only looks for exact compound matches in the training set, this statistic is relatively insensitive. 
The validity metric determines if a synthesized molecule has the correct syntactic structure. Uniqueness is also 
determined if molecules appear multiple times in a group of generated molecules. The Frechet Chemnet Distance 
(FCD) was established by Preuer et al. (2018) and has been demonstrated to incorporate a range of heuristics in a single 
score. The FCD is included in more comprehensive benchmarking suites (Brown et al. 2019; Polykovskiy et al. 2018). 
While the molecules produced by distribution-learning models may appear clear, objectively determining whether the 
model grasped existing patterns in the data distribution or merely duplicated the training inputs is difficult. 

In general, evaluating generative models is difficult and necessitates the creation of new metrics (Preuer et al. 2018; 
Brown et al. 2019; Polykovskiy et al. 2018). These measurements, on the other hand, are unable to determine when 
algorithms repeat the training data with minimum alterations, which we refer to as the copy problem. 

To demonstrate the copy problem, we show how a simple model called AddCarbon can fool most distribution learning 
measures (Brown et al. 2019). To sample a “new” molecule, our model selects a random molecule from the training 
set. Then, in its SMILES representation, a carbon atom is introduced at a random location. If a syntactically valid 
SMILES and a molecule not previously in the training set are returned, a new random sample is generated. Other insert 
places are explored if the carbon atom insertion results in an invalid SMILES string. If none of the positions work, a 
new molecule is picked from the training set, and the processes are repeated until success is achieved.  

The GuacaMol distribution learning benchmark is used to assess this model (Brown et al. 2019). The AddCarbon model 
outperforms many complicated generative models and achieves near-perfect benchmarking scores (see Table 1). It 
possesses a 100 percent originality and validity by construction, as well as almost perfect uniqueness and a very high 
Kullback–Leibler (KL) divergence measure. 

Table 1: Comparison of the AddCarbon model to the baselines in (Brown et al. 2019) 

 

The FCD was the only metric for which a competitive score was difficult to come by. This was unexpected because the 
FCD is dependent on the SMILES representation, which was forced to be similar to those in the training set in our 
naive model expressly to exploit the FCD. Except for the LSTM model, we were able to beat all of the baselines with 
this simple model. The fact that the simple AddCarbon model is useless in practice while yet scoring well raises 
questions about whether the measures currently in use are adequate for estimating performance. 

Our tests demonstrate that a more precise measurement of novelty would be extremely beneficial. While the FCD 
recognizes that these naively created molecules do not match the training distribution, a naive model similar to the 
AddCarbon model might also fool it. The measurements currently in use do not allow us to determine whether the 
molecule generators behave similarly to our AddCarbon model. Many of the best techniques in the GuacaMol (Brown 
et al. 2019) and Moses (Polykovskiy et al. 2018) benchmarks are likelihood-based models (Segler et al. 2018; Jin, 
Barzilay, and Jaakkola 2018; Gomez-Bombarelli et al. 2018). Similar to natural language processing, these performances 
could be evaluated using the likelihood on a hold-out test set. We believe that if this parameter is relevant, it should 
be reported in future studies (Manavalan & Donepudi, 2016). 
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Mechanisms of failure in goal-directed generation 

We examine probable failure modes of goal-directed molecule producers under this subheading. The construction of 
a scoring function that encompasses all of the desired features a molecule should have in a robust fashion, we suggest, 
is a central difficulty in this scenario. We show that using predictions from a machine learning model as part of the 
score exacerbates the situation. 

Goal-directed generation focuses on discovering molecules that optimize a desired scoring function that must capture 
the task's requirements (Bynagari, 2017). This process is difficult in and of itself because it is difficult to condense 
complicated chemical qualities into a single number, and it becomes even more difficult when attempting to optimize 
for many properties at the same time. 

Even if the created molecules achieve high scores, they may do so in ways that the practitioner does not anticipate. 
While the challenge can be regarded solved from an optimization standpoint if high-scoring molecules are produced, 
the outcomes may not be satisfactory or helpful. For example, the produced molecules in Figure 1 have high scores yet 
contain substructures that are unstable or synthetically infeasible. 

 

Figure 1: High scoring compounds generated for the DRD2 task described below, with actives from the training set for 
comparison 

In practice, we've discovered that generative models are really good at creating unexpected solutions that are 
numerically superior but not very useful (Bynagari, 2018). Before arriving at compounds that could be relevant for 
drug development efforts, this generally necessitates numerous repetitions between creating molecules and adjusting 
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the scoring function to account for previously unforeseen behavior from the generator. We've noticed that as more 
machine learning models are added to the scoring function, this tendency becomes even more pronounced. 

Other applications (Lehman et al. 2019) have observed this tendency of score optimization in unexpected ways. The 
goal in one example was to create a locomotion-capable body, but the optimization technique instead revealed the 
simpler solution of a tall body falling over, which also satisfied the scoring function. 

Exact scoring functions are not accessible for many jobs in drug discovery. While some qualities, such as molecular 
mass, may be estimated with precision given a compound, more complicated properties, such as bioactivities, cannot. 
Instead, machine learning models are frequently fitted to experimental data to approximate these (Olivecrona et al. 
2017; Popova et al., 2018; Segler et al. 2018; Neogy & Bynagari, 2018). These models can then be utilized as a scoring 
function or as a component of a scoring function.  

Machine learning models include biases based on the data they were trained on as well. Models frequently show near-
perfect prediction performance on training data, but perform poorly on hold-out data (Bynagari & Fadziso, 2018). This 
is accomplished by constructing predictions based on fictitious patterns that can be utilized to link samples to labels 
but aren't actual explanatory aspects of the output. As a result, these erroneous patterns may be retrieved when a learnt 
model's outputs are improved (Donepudi, 2017). Furthermore, it is usually observed that actives/inactives from the 
training set get higher/lower prediction scores than those who took the test set. This could lead to a bias in the 
formation of chemical scores, similar to how they are skewed in the training set actives that are in favor. Prejudices 
based on data are referred to as data-specific prejudices. 

METHODS 

To demonstrate these failure patterns, we will now present our experimental setup. Our goal is to create compounds 
that are capable of attacking a biological target. We downloaded data from ChEMBL for three well-known targets: 
Janus kinase 2 (JAK2), epidermal growth factor receptor (EGFR), and dopamine receptor D2 (DRD2) (Bento et al. 2014). 
To get binary classification tasks, we preprocessed the data. Table 2 contains information regarding the data. The data 
is split into two halves, which we will refer to as split 1/2, before calculating a scoring function. The percentage of 
actives versus inactives. Our goal is to train three bioactivity models with similar prediction performance, one of which 
will be utilized as a scoring function for molecular optimization and the other two as performance evaluation models. 
Three classifiers are trained to achieve this goal. The first classifier, which was trained on split 1, will be utilized as a 
scoring function for optimizing molecules, and its output will be called optimization score (OS).  

The second classifier uses a different random seed than the OS model to train on split 1. This classifier assesses model 
specific biases and controls whether the scores of optimized molecules generalize across two classifiers trained on the 
same data. Model control scores are the outputs of the model (MCS). The third classifier, which was learned on split 
2, is used to see if the optimized molecules perform well when compared to a model that was trained on other samples 
and quantifies data-specific biases. The data control score is the name given to the result of this classifier (DCS). 

As a classification approach, we employ a random forest classifier (Breiman 2001) implemented in scikit-learn 
(Pedregosa et al. 2011). As a scoring function, the ratio of trees predicting that a molecule is active is employed. We 
employ binary folded ECFP fingerprints of size 1024 and radius 2 (Rogers and Hahn 2010) as features, which were 
calculated using rdkit (Landrum 2006). For each of the three targets, JAK2, EGFR, and DRD2, we found three classifiers 
with equivalent predictive performance (see Table 2) that are acceptable for goal-directed generation. The performance 
of each model was assessed on the split that was not utilized for training. Because the performance of all three 
classifiers is expected to be independent of the data split and random seed used, there is only one performance number 
for all three. 

Table 2: Information on the data sets 

 

Then, using a goal-directed generation technique, we were able to generate molecules with high optimization scores. 
According to Guacamol, the two best-performing molecular generators are used here (Brown et al. 2019). A graph-
based genetic algorithm (GA) is one of them (Jensen 2019). GA improves molecules by applying random mutations 
and crossovers to a population of molecules and keeping the best in each generation. Random molecules from the 
distribution-learning training set defined in (Brown et al. 2019), which is a random subset of the chemicals in ChEMBL 
(Bento et al. 2014), were used as the beginning population. SMILES-LSTM (LSTM) is the second optimization algorithm 
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we apply (Segler et al. 2018). This approach produces molecules by inferring the probabilities of the next character in 
SMILES strings based on the probabilities of the previous ones (Donepudi, 2016). The molecules are fine-tuned using 
a hill climbing method, which involves sampling molecules iteratively, keeping the best ones, and fine-tuning the 
model on these high-scoring molecules. To initialize the generator, we used the pretrained model given by (Brown et 
al. 2019). The starting population for GA was taken from the same data set that this model was trained on. For each 
data set, we perform each optimization technique ten times. 

The proposed experimental approach, which includes optimization and control scores, allows us to learn how a 
generative model optimizes the score and whether it is affected by the bioactivity model's biases. A training and test 
set are used in supervised learning methods, and the setup with an optimization and control score is similar 
(Donepudi, 2015). The purpose of supervised learning is to achieve good results on a test set that was not used during 
optimization, which corresponds to the control scores in our case (Manavalan & Bynagari, 2015). 

RESULTS AND DISCUSSION 

First, we look at how the optimization score (OS) and data control score (DCS) change during EGFR task optimization 
(see Figure 2). We present the scores of molecules in the population at various iterations for GA, but we sample 
molecules in each iteration for LSTM. The optimization procedure boosts the OS more than the DCS when starting 
with random ChEMBL compounds. The DRD2 and JAK2 data sets exhibit the same behavior. There is a mismatch 
between OS and DCS for all of the jobs addressed here, indicating that the optimization technique has model and/or 
data specific biases. 

 

Figure 2: Scatter plots of OS vs. DCS on molecules during the course of training 

As evidenced by their migration towards the outlines in the plot, the optimized molecules appear to inhabit the same 
region as the split 1 actives that were used to train the OS. This indicates that the molecular optimizer looks for 
compounds that are related to the actives used to calculate the optimization scoring function. As determined by ECFP4 
Tanimoto similarity, this is really the case, as optimized molecules have a more comparable neighbor in split 1 than in 
split 2. This demonstrates that data particular biases can account for at least some of the difference between OS and DCS. 

Next, we look at how much of the discrepancy between OS and DCS is due to model and data biases. Figure 3 depicts 
the evolution of all three scores over the period of optimization. In the process of training, we notice that the OS and 
MCS diverge. This shows that, despite being trained on the identical data, optimization uses properties unique to the 
OS to obtain improvements that do not generalize to the MCS. It's also worth noting that data-specific biases account 
for the majority of the difference between OC and DCS.  
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Figure 3 further illustrates that, while the OS rises steadily, the control scores occasionally plateau or even decline. As 
a result, optimization should be stopped as soon as the control scores stop increasing. 

 

Figure 3: Scores during optimization. For each curve we first took the mean of the scores for each run 

The design decisions we made constrained our trials and the conclusions we drew from them. The LSTM and GA 
molecular optimizers were used because they worked effectively in GuacaMol (Brown et al. 2019). However, it's 
possible that other algorithms don't have the same flaws as the ones described above. We went with ECFP fingerprints 
because they've been demonstrated to work well in the past (Mayr et al. 2018). Random Forest classifiers were chosen 
because they are reasonably easy to train and have good performance (Donepudi, 2014). When using different data 
sets, the results may differ. Future investigations will, however, focus on more thorough experimentation. 

CONCLUSION AND RECOMMENDATION 

We looked into generative models for molecules in light of existing evaluation methodologies in this paper. Our 
conclusion on distribution-learning is that even the most basic and practically useless models can achieve near-perfect 
scores on many current criteria. Many of the best technologies, according to benchmark studies (Brown et al. 2019; 
Polykovskiy et al. 2018), are likelihood-based models, and we propose that test set likelihoods should be included in 
future comparisons. This would be a complete gauge that would be an improvement over previously suggested 
measurements that may be “tricked.” We talked about different failure modes in goal-directed learning, with a focus 
on issues that arise when machine learning models are used as scoring functions. While various technological tools 
and strategies can be used to improve a scoring function, the scoring function itself is the main challenge. We 
demonstrated that optimization takes advantage of model-based scoring functions' data and model-specific biases. 
Given that the goal of generative models for de novo design is to explore all of chemical space, biases toward training 
data could imply a failure in this regard.  
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