Structural Analysis of NaYF4 Solution Processed Nanoparticles for Hela Cell Studies

Authors

  • Cliff Orori Mosiori Technical University of Mombasa
  • John. Maera Maasai Mara University

DOI:

https://doi.org/10.18034/mjmbr.v7i2.495

Keywords:

endocytosis, HeLa cell, incubation, nanocrystal, polyvinylpyrrolidone

Abstract

The NaYF4 nanoparticles were prepared and analyzed. Its structural analysis confirmed the formation of nanocrystals of desired sizes and spectral properties that can be incorporated into Hela cell studies. The internalization of NaYF4 nanoparticles in HeLa cells was determined at different nanoparticles concentrations and for incubation periods from 3 to 24 hours using various techniques. The images revealed a redistribution of nanoparticles inside the cell that increased with incubation time, concentration levels, and depended on the presence of the transfection factor. The study identified factors responsible for effective endocytosis of the NaYF4 nanoparticles to HeLa cells. Thus this procedure or method could be applied to investigate a wide range of future “smart” theranostic agents that may result in be very promising fluorescent probes for imaging real-time cellular dynamics.

Downloads

Download data is not yet available.

Author Biographies

  • Cliff Orori Mosiori, Technical University of Mombasa

    Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420, Mombasa, KENYA

  • John. Maera , Maasai Mara University

    Department of Mathematics and Physical Sciences, Maasai Mara University, P. O. Box 420, Narok, KENYA

References

Basith, N. M., Vijaya, J. J., Kennedy, L. J., Bououdina, M., Jenefar, S., & Kaviyarasan, V. (2014). Co-doped ZnO nanoparticles: structural, morphological, optical, magnetic and antibacterial studies. Journal of Materials Science & Technology, 30(11), 1108-1117. DOI: https://doi.org/10.1016/j.jmst.2014.07.013

Di Giovanni, C., Wang, W. A., Nowak, S., Grenèche, J. M., Lecoq, H., Mouton, L., ... & Tard, C. (2014). Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. Acs Catalysis, 4(2), 681-687. DOI: https://doi.org/10.1021/cs4011698

Ebrahimi, S. S., Masoudpanah, S. M., Amiri, H., & Yousefzadeh, M. (2014). Magnetic properties of MnZn ferrite nanoparticles obtained by SHS and sol-gel autocombustion techniques. Ceramics International, 40(5), 6713-6718. DOI: https://doi.org/10.1016/j.ceramint.2013.11.133

Gavrilović, T. V., Jovanović, D. J., Lojpur, V., & Dramićanin, M. D. (2014). Multifunctional Eu3+-and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method. Scientific reports, 4, 4209.

Grujić-Brojčin, M., Armaković, S., Tomić, N., Abramović, B., Golubović, A., Stojadinović, B., ... & Šćepanović, M. (2014). Surface modification of sol–gel synthesized TiO 2 nanoparticles induced by La-doping. Materials Characterization, 88, 30-41. DOI: https://doi.org/10.1016/j.matchar.2013.12.002

Hameed, A. S., Bahiraei, H., Reddy, M. V., Shoushtari, M. Z., Vittal, J. J., Ong, C. K., & Chowdari, B. V. R. (2014). Lithium storage properties of pristine and (Mg, Cu) codoped ZnFe2O4 nanoparticles. ACS applied materials & interfaces, 6(13), 10744-10753. DOI: https://doi.org/10.1021/am502605s

Hill, R. J., & Howard, C. J. (1987). Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. Journal of Applied Crystallography, 20(6), 467-474. DOI: https://doi.org/10.1107/S0021889887086199

Karpov, I., Ushakov, A., Fedorov, L., & Lepeshev, A. (2014). Method for producing nanomaterials in the plasma of a low-pressure pulsed arc discharge. Technical Physics, 59(4). DOI: https://doi.org/10.1134/S1063784214040148

Kumar Srivastav, S., Gajbhiye, N. S., & Banerjee, A. (2013). Structural transformation and enhancement in magnetic properties of single-phase Bi1− xPrxFeO3 nanoparticles. Journal of Applied Physics, 113(20), 203917. DOI: https://doi.org/10.1063/1.4807928

Leite, E. R., Maciel, A. P., Weber, I. T., Lisboa‐Filho, P. N., Longo, E., Paiva‐Santos, C. O., ... & Schreiner, W. H. (2002). Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Advanced Materials, 14(12), 905-908. DOI: https://doi.org/10.1002/1521-4095(20020618)14:12<905::AID-ADMA905>3.0.CO;2-D

Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J., & Manthiram, A. (2014). Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nature communications, 5. DOI: https://doi.org/10.1038/ncomms4949

Manikandan, A., Kennedy, L. J., Bououdina, M., & Vijaya, J. J. (2014). Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. Journal of Magnetism and Magnetic Materials, 349, 249-258. DOI: https://doi.org/10.1016/j.jmmm.2013.09.013

Manikandan, A., Vijaya, J. J., Mary, J. A., Kennedy, L. J., & Dinesh, A. (2014). Structural, optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method. Journal of Industrial and Engineering Chemistry, 20(4), 2077-2085. DOI: https://doi.org/10.1016/j.jiec.2013.09.035

Peters, R. J., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P., Marvin, H. J., Weigel, S., ... & Bouwmeester, H. (2014). Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. Journal of agricultural and food chemistry, 62(27), 6285-6293. DOI: https://doi.org/10.1021/jf5011885

Riwotzki, K., Meyssamy, H., Schnablegger, H., Kornowski, A., & Haase, M. (2001). Liquid‐Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4:Ce,Tb Nanocrystals. Angewandte Chemie International Edition, 40(3), 573-576. DOI: https://doi.org/10.1002/1521-3773(20010202)40:3<573::AID-ANIE573>3.0.CO;2-0

Walter, A., Billotey, C., Garofalo, A., Ulhaq-Bouillet, C., Lefèvre, C., Taleb, J., ... & Gazeau, F. (2014). Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chemistry of Materials, 26(18), 5252-5264. DOI: https://doi.org/10.1021/cm5019025

Young, D. S., Sachais, B. S., & Jefferies, L. C. (1993). The rietveld method.

--0--

Published

2020-07-27

Issue

Section

Peer-reviewed Article

How to Cite

Mosiori, C. O. ., & Maera , J. (2020). Structural Analysis of NaYF4 Solution Processed Nanoparticles for Hela Cell Studies. Malaysian Journal of Medical and Biological Research, 7(2), 87-92. https://doi.org/10.18034/mjmbr.v7i2.495