Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries: Challenges and Opportunities

Authors

  • Suman Reddy Mallipeddi Java Developer II, Sbase Technologies Inc. (Capital One), 1680 Capital One Dr, McLean VA 22102, USA
  • Dileep Reddy Goda Software Engineer, iMINDS Technology Systems, Inc. (JPMorgan Chase), Chicago, IL 60603, USA

DOI:

https://doi.org/10.18034/apjee.v5i2.726

Keywords:

Solid-state Electrolytes, High-energy-density Batteries, Lithium-ion Batteries, Ionic Conductivity, Electrochemical Stability, Advanced Energy Storage

Abstract

For various applications, solid-state electrolytes (SSEs) present exciting possibilities for improving lithium-ion batteries' performance, stability, and safety (LIBs). To shed light on the significant variables influencing the direction of energy storage technology in the future, this paper examines the opportunities and problems related to SSEs for high-energy-density LIBs. The study's primary goals are to explore the characteristics and difficulties of SSEs, appraise manufacturing methods, appraise the effectiveness of SSE-based LIBs, and investigate potential future directions and policy ramifications. The study's methodology involves a thorough literature analysis, summarizing previous research findings and highlighting areas and chances for additional investigation. Significant discoveries emphasize how crucial multifunctional SSEs, interface engineering, improved materials design, scalable manufacturing techniques, and international cooperation are to the advancement of SSE-based LIBs. Policy implications: To expedite the development and deployment of SSE-based energy storage systems, investments in infrastructure, regulatory standards, environmental sustainability, and cooperative research projects are essential.

Downloads

Download data is not yet available.

References

Albertus, P., Babinec, S., Litzelman, S., Newman, A. (2018). Status and Challenges in Enabling the Lithium Metal Electrode for High-energy and Low-cost Rechargeable Batteries. Nature Energy, 3(1), 16-21. https://doi.org/10.1038/s41560-017-0047-2

Ande, J. R. P. K. (2018). Performance-Based Seismic Design of High-Rise Buildings: Incorporating Nonlinear Soil-Structure Interaction Effects. Engineering International, 6(2), 187–200. https://doi.org/10.18034/ei.v6i2.691

Ande, J. R. P. K., Varghese, A., Mallipeddi, S. R., Goda, D. R., & Yerram, S. R. (2017). Modeling and Simulation of Electromagnetic Interference in Power Distribution Networks: Implications for Grid Stability. Asia Pacific Journal of Energy and Environment, 4(2), 71-80. https://doi.org/10.18034/apjee.v4i2.720

Arteaga, J., Hamidreza, Z., Venkataraman, T. (2017). Overview of Lithium-Ion Grid-Scale Energy Storage Systems. Current Sustainable / Renewable Energy Reports, 4(4), 197-208. https://doi.org/10.1007/s40518-017-0086-0

Baddam, P. R., & Kaluvakuri, S. (2016). The Power and Legacy of C Programming: A Deep Dive into the Language. Technology & Management Review, 1, 1-13. https://upright.pub/index.php/tmr/article/view/107

Balogun, M-S., Qiu, W., Luo, Y., Meng, H., Mai, W. (2016). A Review of the Development of Full Cell Lithium-ion Batteries: The Impact of Nanostructured Anode Materials. Nano Research, 9(10), 2823-2851. https://doi.org/10.1007/s12274-016-1171-1

Choi, H., Kim, H. W., Ki, J-K., Lim, Y. J., Kim, Y. (2017). Nanocomposite Quasi-solid-state Electrolyte for High-safety Lithium Batteries. Nano Research, 10(9), 3092-3102. https://doi.org/10.1007/s12274-017-1526-2

Chuang, Y., Ganapathy, S., van Eck, E. R. H., Wang, H., Basak, S. (2017). Accessing the Bottleneck in All-solid State Batteries, Lithium-ion Transport Over the Solid-electrolyte-electrode Interface. Nature Communications, 8(1-9). https://doi.org/10.1038/s41467-017-01187-y

Goda, D. R. (2016). A Fully Analytical Back-gate Model for N-channel Gallium Nitrate MESFET's with Back Channel Implant. California State University, Northridge. http://hdl.handle.net/10211.3/176151

Holtstiege, F., Bärmann, P., Nölle, R., Winter, M., Placke, T. (2018). Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 4(1). https://doi.org/10.3390/batteries4010004

Kaluvakuri, S., & Vadiyala, V. R. (2016). Harnessing the Potential of CSS: An Exhaustive Reference for Web Styling. Engineering International, 4(2), 95–110. https://doi.org/10.18034/ei.v4i2.682

Kumar, H., Rajan, S., Shukla, A. K. (2012). Development of Lithium-ion Batteries From Micro-structured to Nanostructured Materials: Its Issues and Challenges. Science Progress, 95(3), 283. https://doi.org/10.3184/003685012X13421145651372

Mahadasa, R. (2016). Blockchain Integration in Cloud Computing: A Promising Approach for Data Integrity and Trust. Technology & Management Review, 1, 14-20. https://upright.pub/index.php/tmr/article/view/113

Mahadasa, R., & Surarapu, P. (2016). Toward Green Clouds: Sustainable Practices and Energy-Efficient Solutions in Cloud Computing. Asia Pacific Journal of Energy and Environment, 3(2), 83-88. https://doi.org/10.18034/apjee.v3i2.713

Mallipeddi, S. R., Goda, D. R., Yerram, S. R., Varghese, A., & Ande, J. R. P. K. (2017). Telemedicine and Beyond: Navigating the Frontier of Medical Technology. Technology & Management Review, 2, 37-50. https://upright.pub/index.php/tmr/article/view/118

Mallipeddi, S. R., Lushbough, C. M., & Gnimpieba, E. Z. (2014). Reference Integrator: a workflow for similarity driven multi-sources publication merging. The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). https://www.proquest.com/docview/1648971371

Mäntymäki, M., Ritala, M., Leskelä, M. (2018). Metal Fluorides as Lithium-Ion Battery Materials: An Atomic Layer Deposition Perspective. Coatings, 8(8). https://doi.org/10.3390/coatings8080277

Rafiee, M., Kianfar, F., Farhadkhani, M. (2014). A Multistage Stochastic Programming Approach in Project Selection and Scheduling. The International Journal of Advanced Manufacturing Technology, 70(9-12), 2125-2137. https://doi.org/10.1007/s00170-013-5362-6

Ryu, J., Hong, D., Hyun-Wook, L., Park, S. (2017). Practical Considerations of Si-based Anodes for Lithium-ion Battery Applications. Nano Research, 10(12), 3970-4002. https://doi.org/10.1007/s12274-017-1692-2

Surarapu, P. (2016). Emerging Trends in Smart Grid Technologies: An Overview of Future Power Systems. International Journal of Reciprocal Symmetry and Theoretical Physics, 3, 17-24. https://upright.pub/index.php/ijrstp/article/view/114

Surarapu, P., & Mahadasa, R. (2017). Enhancing Web Development through the Utilization of Cutting-Edge HTML5. Technology & Management Review, 2, 25-36. https://upright.pub/index.php/tmr/article/view/115

Vadiyala, V. R., & Baddam, P. R. (2017). Mastering JavaScript’s Full Potential to Become a Web Development Giant. Technology & Management Review, 2, 13-24. https://upright.pub/index.php/tmr/article/view/108

Vadiyala, V. R., Baddam, P. R., & Kaluvakuri, S. (2016). Demystifying Google Cloud: A Comprehensive Review of Cloud Computing Services. Asian Journal of Applied Science and Engineering, 5(1), 207–218. https://doi.org/10.18034/ajase.v5i1.80

Zhu, Z., Chen, X. (2017). Artificial Interphase Engineering of Electrode Materials to Improve the Overall Performance of Lithium-ion Batteries. Nano Research, 10(12), 4115-4138. https://doi.org/10.1007/s12274-017-1647-7

Downloads

Published

2018-12-31

How to Cite

Mallipeddi, S. R., & Goda, D. R. (2018). Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries: Challenges and Opportunities. Asia Pacific Journal of Energy and Environment, 5(2), 103-112. https://doi.org/10.18034/apjee.v5i2.726

Similar Articles

1-10 of 86

You may also start an advanced similarity search for this article.