Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics

Authors

  • Takudzwa Fadziso Institute of Lifelong Learning and Development Studies, Chinhoyi University of Technology, ZIMBABWE
  • Aditya Manikyala Java Developer, Pioneer Consulting Services Inc., 4335 Premier Plaza, Ashburn, VA 20147, USA
  • Hari Priya Kommineni Software Engineer, Marriott International, 7750 Wisconsin Ave, Bethesda, MD 20814, USA
  • Satya Surya MKLG Gudimetla Naga Venkata Sr Business Application Analyst, 1 Hormel Place, Austin, MN 55912, USA

DOI:

https://doi.org/10.18034/apjee.v10i1.778

Keywords:

Energy Efficiency, Distributed Systems, Code Refactoring, Data Analytics, Adaptive Energy Management, Real-Time Monitoring, Sustainable Computing

Abstract

This research examines code restructuring and data analytics to improve distributed system energy efficiency. The main goal is to optimize software design and use data-driven insights to decrease energy usage without compromising performance. The secondary data-based assessment examines code refactoring methods like algorithm optimization and memory management and data analytics tools like predictive models and real-time monitoring. Key findings show that code refactoring streamlines algorithms, reduces redundant processes, and improves task distribution. At the same time, data analytics enables adaptive energy management through predictive forecasting, anomaly detection, and dynamic resource allocation. Combining these methods yields a scalable distributed energy efficiency solution. However, ongoing data processing energy costs and integration complexity persist. The report emphasizes the need for incentives for technology investments, training, and established best practices to promote energy-efficient distributed systems. These results indicate that a balanced strategy combining code optimization and powerful data analytics may maintain and improve energy efficiency in the continually changing distributed computing ecosystem.

Downloads

Download data is not yet available.

References

Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.

Batic, M., Begalli, M., Han, M., Hauf, S., Hoff, G. (2012). Refactoring, Reengineering and Evolution: Paths to Geant4 Uncertainty Quantification and Performance Improvement. Journal of Physics: Conference Series, 396(2). https://doi.org/10.1088/1742-6596/396/2/022038

Chowdhury, S. A., Gil, S., Romansky, S., Hindle, A. (2017). Did I Make a Mistake? Finding the Impact of Code Change on Energy Regression. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.2419v3

Corral-García, J., González-Sánchez, J-L., Pérez-Toledano, M-Á. (2018). Evaluation of Strategies for the Development of Efficient Code for Raspberry Pi Devices. Sensors, 18(11). https://doi.org/10.3390/s18114066

Couturier, B., Kiagias, E., Lohn, S. B. (2014). Systematic Profiling to Monitor and Specify the Software Refactoring Process of the LHCb Experiment. Journal of Physics: Conference Series, 513(5). https://doi.org/10.1088/1742-6596/513/5/052020

Cruz, L., Abreu, R. (2019). Catalog of Energy Patterns for Mobile Applications. Empirical Software Engineering, 24(4), 2209-2235. https://doi.org/10.1007/s10664-019-09682-0

Cruz, L., Abreu, R. (2019). Improving Energy Efficiency through Automatic Refactoring. Journal of Software Engineering Research and Development, 7, 2:1- 2:9. https://doi.org/10.5753/jserd.2019.17

Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Huang, G., Cai, H., Swiech, M., Zhang, Y., Liu, X. (2017). DelayDroid: An Instrumented Approach to Reducing Tail-time Energy of Android Apps. Science China. Information Sciences, 60(1), 012106. https://doi.org/10.1007/s11432-015-1026-y

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kim, D., Hong, J-E., Yoon, I., Lee, S-H. (2018). Code Refactoring Techniques for Reducing Energy Consumption in Embedded Computing Environment. Cluster Computing, 21(1), 1079-1095. https://doi.org/10.1007/s10586-016-0691-5

Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123

Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672

Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98

Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99

Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Ryu, H., Kwon, O-K. (2018). Fast, Energy-efficient Electronic Structure Simulations for Multi-million Atomic Systems with GPU Devices. Journal of Computational Electronics, 17(2), 698-706. https://doi.org/10.1007/s10825-018-1138-4

Siebra, C., Costa, P., da Silva, F. Q. B., Santos, A. M. L., Mascaro, A. (2013). The Hardware and Software Aspects of Energy Consumption in the Mobile Development Platform. International Journal of Pervasive Computing and Communications, 9(2), 139-162. https://doi.org/10.1108/IJPCC-04-2013-0007

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771

Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.

Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164

Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.

Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159

Downloads

Published

2023-02-28

How to Cite

Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778

Similar Articles

61-70 of 80

You may also start an advanced similarity search for this article.