Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks

Authors

  • Pavan Kumar Gade Software Developer, City National Bank, Los Angeles, CA, USA
  • Narayana Reddy Bommu Sridharlakshmi SAP Master Data Consultant, Data Solutions Inc., 28345 Beck Road, WIXOM, MI 48393, USA
  • Abhishekar Reddy Allam Software Developer, Compunnel Software Group Inc., Plainsboro, NJ, 08536, USA
  • Samuel Koehler Research Fellow, College of Engineering and Computer Science, University of Central Florida, USA

DOI:

https://doi.org/10.18034/abcjar.v10i2.770

Keywords:

Machine Learning, Beamforming, Smart Antennas, Wireless Networks, Signal Processing, Adaptive Algorithms, Channel Estimation, Reinforcement Learning

Abstract

This research integrates machine learning (ML) approaches into beamforming using smart antennas to improve wireless networks. The main goals are to evaluate ML-driven beamforming techniques for enhancing SNR, BER, and throughput while tackling dynamic environments and interference. The study synthesizes simulation and experimental results using secondary data. Significant results show that ML-enhanced beamforming outperforms standard approaches by improving SNR by 15 dB, lowering BER by 30-50%, and decreasing interference. However, sophisticated ML algorithms are computationally demanding and need high-quality training data. Policy implications emphasize the need for effective data governance frameworks to assure data integrity, security, and efficient algorithms that can function within infrastructure restrictions. Stakeholders should collaborate to create standardized methods that optimize the advantages of ML-enhanced beamforming while addressing concerns, opening the door for more intelligent, more adaptable wireless communication systems.

Downloads

Download data is not yet available.

References

Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.

Almeida, N. C., Fernandes, M. A. C., Neto, A. D. D. (2015). Beamforming and Power Control in Sensor Arrays Using Reinforcement Learning. Sensors, 15(3), 6668-6687. https://doi.org/10.3390/s150306668 DOI: https://doi.org/10.3390/s150306668

Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Engmann, F., Katsriku, F. A., Abdulai, J-D., Adu-Manu, K. S., Banaseka, F. K. (2018). Prolonging the Lifetime of Wireless Sensor Networks: A Review of Current Techniques. Wireless Communications & Mobile Computing (Online), 2018. https://doi.org/10.1155/2018/8035065 DOI: https://doi.org/10.1155/2018/8035065

Famoriji, O. J., Zhang, Z., Fadamiro, A., Zakariyya, R., Lin, F. (2018). Planar Array Diagnostic Tool for Millimeter-Wave Wireless Communication Systems. Electronics, 7(12), 383. https://doi.org/10.3390/electronics7120383 DOI: https://doi.org/10.3390/electronics7120383

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Jia-xin, C., Zhong, R., Li, Y. (2019). Antenna Selection for Multiple-input Multiple-output Systems Based on Deep Convolutional Neural Networks. PLoS One, 14(5), e0215672. https://doi.org/10.1371/journal.pone.0215672 DOI: https://doi.org/10.1371/journal.pone.0215672

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. Retrieved from https://4ajournal.com/article/view/97

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672

Li, Q., Dai, K., Wang, X., Zhang, Y., Zhang, H. (2019). Low-Complexity Failed Element Diagnosis for Radar-Communication mmWave Antenna Array with Low SNR. Electronics, 8(8), 904. https://doi.org/10.3390/electronics8080904 DOI: https://doi.org/10.3390/electronics8080904

Memon, M. L., Saxena, N., Roy, A., Shin, D. R. (2019). Backscatter Communications: Inception of the Battery-Free Era—A Comprehensive Survey. Electronics, 8(2), 129. https://doi.org/10.3390/electronics8020129 DOI: https://doi.org/10.3390/electronics8020129

Minoli, D., Occhiogrosso, B. (2019). Practical Aspects for the Integration of 5G Networks and IoT Applications in Smart Cities Environments. Wireless Communications & Mobile Computing (Online), 2019. https://doi.org/10.1155/2019/5710834 DOI: https://doi.org/10.1155/2019/5710834

Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Singh, K. D., Rawat, P., Bonnin, J-m. (2014). Cognitive Radio for Vehicular Ad Hoc Networks (CR-VANETs): Approaches and Challenges. EURASIP Journal on Wireless Communications and Networking, 2014, 1-22. https://doi.org/10.1186/1687-1499-2014-49 DOI: https://doi.org/10.1186/1687-1499-2014-49

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sultan, K., Hazrat, A., Zhang, Z. (2018). Big Data Perspective and Challenges in Next Generation Networks. Future Internet, 10(7). https://doi.org/10.3390/fi10070056 DOI: https://doi.org/10.3390/fi10070056

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94

Yıldız, A., Dzakmic, Š., Saleh, M. A. (2019). A Short Survey on Next Generation 5G Wireless Networks. Sustainable Engineering and Innovation, 1(1), 57-66. https://doi.org/10.37868/sei.v1i1.93 DOI: https://doi.org/10.37868/sei.v1i1.93

Downloads

Published

2021-12-31

How to Cite

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770

Similar Articles

11-20 of 38

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)