Tracking Intrinsic Properties of CH3NH3PbI3 Perovskite Thin Films Grown by Spin Coating Technique at Ambient Temperature

Authors

  • Cliff Orori Mosiori Technical University of Mombasa
  • John Maera Maasai Mara University

DOI:

https://doi.org/10.18034/apjee.v6i2.266

Keywords:

Photoexcitation, Perovskite, photogenerated, Methyl ammonium lead iodide, monovalent

Abstract

Methyl ammonium lead iodide has become a burgeoning class of hybrid halide perovskites of solution-processed semiconductors. Advancements in its processing and characterization underscore structural, optical, and electronic properties. They have led to the development of perovskite solar cells, photo detectors, lasers, and photo diodes with power conversion efficiencies mature to be classified as first and second-generation technologies. Characterizing forms an integral understanding the operating principles and fundamental limitations for optoelectronics applications. Studies outlined in this paper covers CH3NH3PbI3 using time-resolved pump-probe spectroscopy, X-ray diffractometry, spectrophotometry and other measurements. Thus this investigatiosn may serve as principle tool in analyzing excited state decay kinetics and optical nonlinearities in CH3NH3PbI3 thin films. It is demonstrated herein that non-resonant photoexcitation yields a large fraction of free carriers on a sub-picosecond time scale. If applied in practical optoelectronic applications then any photogenerated carriers may travel long carrier lengths before they are extracted to realize large external quantum efficiencies and efficient charge extraction. The optical constants of CH3NH3PbI3 are interpreted using ab initio calculations through models. Findings show good agreement between the optical constants derived from QSGW and those from related literature. Transition from the highest valence band (VB) to the lowest conduction band (CB) was found to be responsible for almost all the optical responses between 1.2 and 5.5 eV. It was concluded that optical constants and energy band diagrams of CH3NH3PbI3 can be used to simulate the contributions from different optical transitions to a typical transient absorption spectrum for many optoelectronic applications.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

Author Biographies

  • Cliff Orori Mosiori, Technical University of Mombasa

    Lecturer, Department of Mathematics and Physics, Faculty of Pure and Healthy Sciences, Technical University of Mombasa, Mombasa, KENYA

  • John Maera, Maasai Mara University

    Senior Lecturer, Department of Mathematics and Physical Sciences, Maasai Mara University, Narok, KENYA

References

Abate, A.; Saliba, M.; Hollman, J.; Stranks, D.; Wojciechowski, K,; Avolio, R.; Grancini, G.; Petrozza, A.; and Snaith, J. (2014). "Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells". Nano Letters 14 (6): 3247–3254. DOI: https://doi.org/10.1021/nl500627x

ACS nano, Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. 9(1), 639-646. DOI: https://doi.org/10.1021/nn505978r

Ball, M.; Lee, M.; Hey, A.; and Snaith, J. (2013). "Low-temperature processed meso-superstructured to thin-film perovskite solar cells". Energy & Environmental Science 6 (6): 1739.

Burschka, J.; Pellet, N.; Moon, S.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, K. and Grätzel, M. (2013). "Sequential deposition as a route to high-performance perovskite-sensitized solar cells". Nature 499 (7458): 316–319. DOI: https://doi.org/10.1038/nature12340

Carlos, F. and Ignacio G. (2008) Revisiting the Effects of the Molecular Structure in the Kinetics of Electron transfer of Quinones: Kinetic Differences in Structural Isomers; J. Mex. Chem. Soc. 52(1), 11-18ISSN 1870-249X

Chen, H. W., Sakai, N., Ikegami, M., & Miyasaka, T. (2014). Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. The journal of physical chemistry letters, 6(1), 164-169. DOI: https://doi.org/10.1021/jz502429u

Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. Acs Nano, 8(1), 362-373. DOI: https://doi.org/10.1021/nn404323g

Eames, C.; Frost, M.; Barnes, F.; Regan, C.; Walsh, A. and Islam, S. (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications 6: 7497.

Eperon, E.; Burlakov, M.; Docampo, P.; Goriely, A. and Snaith, J. (2014). "Morphological Control for High Performance, Solution-Processed Planar Hetero-junction Perovskite Solar Cells". Advanced Functional Materials 24 (1): 151–157. DOI: https://doi.org/10.1002/adfm.201302090

Eperon, E.; Stranks, D.; Menelaou, C.; Johnston, B.; Herz, M. and Snaith, J. (2014). "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells". Energy & Environmental Science 7 (3): 982.

Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2014). Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. The journal of physical chemistry letters, 5(16), 2903-2909. DOI: https://doi.org/10.1021/jz501510v

Heo, J. H., Song, D. H., Han, H. J., Kim, S. Y., Kim, J. H., Kim, D., .. & Im, S. H. (2015). Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Advanced Materials, 27(22), 3424-3430.

Jeon, N. J., Lee, H. G., Kim, Y. C., Seo, J., Noh, J. H., Lee, J., & Seok, S. I. (2014). o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. Journal of the American Chemical Society, 136(22), 7837-7840. DOI: https://doi.org/10.1021/ja502824c

Jeon, N.; Noh, H.; Kim, C.; Yang, S.; Ryu, S. and Seok, I. (2014). "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells". Nature Materials 13 (9): 897–903. DOI: https://doi.org/10.1038/nmat4014

Kim, H.; Lee, C.; Im, J.; Lee, K.; Moehl, T.; Marchioro, A.; Moon, S.; Humphry-Baker, R.; Yum, J.; Moser, E.; Grätzel, M. and Park, N. (2012). "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%". Scientific Reports 2. DOI: https://doi.org/10.1038/srep00591

Kojima, A.; Teshima, K.; Shirai, Y. and Miyasaka, T, (2009). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society 131 (17): 6050–6051. DOI: https://doi.org/10.1021/ja809598r

Kutes, Y., Ye, L., Zhou, Y., Pang, S., Huey, B. D., & Padture, N. P. (2014). Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. The journal of physical chemistry letters, 5(19), 3335-3339. DOI: https://doi.org/10.1021/jz501697b

Lang, L.; Yang, J.; Liu, H.; Xiang, J. and Gong, G. (2014). First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Physics Letters A 378 (3): 290–293.

Marinova, N., Tress, W., Humphry-Baker, R., Dar, M. I., Bojinov, V., Zakeeruddin, S. M., & Grätzel, M. (2015). Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS nano, 9(4), 4200-4209. DOI: https://doi.org/10.1021/acsnano.5b00447

Meehan, C. (2014). "Getting the lead out of Perovskite Solar Cells". Solar Reviews.

Memming, R., & Bahnemann, D. (2015). Semiconductor electrochemistry. John Wiley & Sons. DOI: https://doi.org/10.1002/9783527688685

Minemoto, T. and Murata, M., (2014). "Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells". Journal of Applied Physics 116 (5): 054505.

Mosconi, E.; Amat, A.; Nazeeruddin, K.; Grätzel, M. and Angelis, F. (2013). "First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications". The Journal of Physical Chemistry C 117 (27): 13902–13913. DOI: https://doi.org/10.1021/jp4048659

O’Regan, B. C., Barnes, P. R., Li, X., Law, C., Palomares, E., & Marin-Beloqui, J. M. (2015). Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. Journal of the American Chemical Society, 137(15), 5087-5099. DOI: https://doi.org/10.1021/jacs.5b00761

Sha, E.; Ren, X.; Chen, L.; and Choy, H. (2015), "The efficiency limit of CH3NH3PbI3 perovskite solar cells". Appl. Phys. Lett. 106 (22): 221104. DOI: https://doi.org/10.1063/1.4922150

Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature communications, 5. DOI: https://doi.org/10.1038/ncomms6784

Shiqiang Luo and Walid A. Daoud (2016) Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite, Materials 2016, 9, 123 DOI: https://doi.org/10.3390/ma9030123

Sivaram, V.; Stranks, D. & Snaith, J. (2015). "Outshining Silicon". Scientific American: 44–46.

Snaith, J. (2013). "Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells". The Journal of Physical Chemistry Letters 4 (21): 3623–3630. DOI: https://doi.org/10.1021/jz4020162

Snaith, J.; Abate, A.; Ball, M.; Eperon, E.; Leijtens, T.; Noel, K.; Wang, T.; Wojciechowski, K.; Zhang, W. and Zhang, W. (2014). "Anomalous Hysteresis in Perovskite Solar Cells". The Journal of Physical Chemistry Letters 5 (9): 1511–1515. DOI: https://doi.org/10.1021/jz500113x

Unger, L.; Hoke, T.; Bailie, D.; Nguyen, H.; Bowring, R.; Heumuller, T.; Christoforo, G. and McGehee, D. (2014). "Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells". Energy & Environmental Science 7 (11): 3690–3698. DOI: https://doi.org/10.1039/C4EE02465F

Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., & Yu, D. (2014). Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. The journal of physical chemistry letters, 5(21), 3937-3945. DOI: https://doi.org/10.1021/jz502111u

Wilcox, K. (2014). "Solar Researchers Find Promise in Tin Perovskite Line". Civil Engineering.

Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q; Yuan, Y.; Wang, C.; Gao, Y. and Huang, J. (2014). "Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers". Energy & Environmental Science 7 (8): 2619.

Yang, B.; Dyck, O.; Poplawsky, J.; Keum, J.; Puretzky, A.; Sanjib, D.; Ivanov, I.; Rouleau, C.; Duscher, G.; Geohegan, D. and Xiao, K. (2015). "Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Bulk Heterojunctions". J. Am. Chem. Soc. 137 (29): 9210–9213. DOI: https://doi.org/10.1021/jacs.5b03144

You, J.; Hong, Z.; Yang, M.; Chen, Q; Cai, M; Song, T; Chen, C.; Lu, S. and Liu, Y. (2014). "Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility". ACS Nano 8 (2): 1674–1680. ISSN 1936-0851.

Zhou, Y.; Yang, M.; Wu, W.; Vasiliev, L.; Zhu, K. and Padture, P. (2015). "Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells". J. Mater. Chem. A 3 (15): 8178–8184. DOI: https://doi.org/10.1039/C5TA00477B

Zuo, L., Gu, Z., Ye, T., Fu, W., Wu, G., Li, H., & Chen, H. (2015). Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. Journal of the American Chemical Society, 137(7), 2674-2679. DOI: https://doi.org/10.1021/ja512518r

-- 0 --

Downloads

Published

2019-12-31

How to Cite

Mosiori, C. O. ., & Maera, J. . (2019). Tracking Intrinsic Properties of CH3NH3PbI3 Perovskite Thin Films Grown by Spin Coating Technique at Ambient Temperature. Asia Pacific Journal of Energy and Environment, 6(2), 59-68. https://doi.org/10.18034/apjee.v6i2.266