MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation
DOI:
https://doi.org/10.18034/apjee.v6i2.776Keywords:
MLOps Pipelines, Generative Artificial Intelligence (GenAI), Renewable Energy Optimization, Energy Harvesting Technologies, Environmental Efficiency, Wireless Sensor Networks (WSNs)Abstract
This article explores the integration of MLOps pipelines with Generative Artificial Intelligence (GenAI) in renewable energy systems, aiming to enhance environmental efficiency and foster innovation. The objectives are to evaluate advancements in energy harvesting technologies for wireless sensor networks (WSNs), analyze the potential of GenAI for optimizing renewable energy operations, and address challenges in deploying MLOps frameworks in dynamic energy environments. The principal findings reveal that MLOps pipelines enable continuous model refinement, scalability, and efficient management of GenAI models, significantly improving renewable energy applications such as resource optimization, predictive maintenance, and energy storage. Energy harvesting technologies, coupled with GenAI, promise autonomous and sustainable solutions, reducing dependency on traditional power sources. Policy implications emphasize the need for standardized regulations, investments in computational infrastructure, and ethical guidelines for AI deployment in energy systems. By addressing current challenges, policymakers and researchers can unlock GenAI's full potential, advancing global sustainability goals.
Downloads
References
Abdulwahid, A. H., Wang, S. (2018). A Novel Method of Protection to Prevent Reverse Power Flow Based on Neuro-Fuzzy Networks for Smart Grid. Sustainability, 10(4), 1059. https://doi.org/10.3390/su10041059 DOI: https://doi.org/10.3390/su10041059
Bhandari, B., Lee, K-T., Lee, G-Y., Cho, Y-M., Ahn, S-H. (2015). Optimization of hybrid Renewable Energy Power Systems: A Review. International Journal of Precision Engineering and Manufacturing - Green Technology, 2(1), 99-112. https://doi.org/10.1007/s40684-015-0013-z DOI: https://doi.org/10.1007/s40684-015-0013-z
Carley, S., Baldwin, E., Maclean, L. M., Brass, J. N. (2017). Global Expansion of Renewable Energy Generation: An Analysis of Policy Instruments. Environmental and Resource Economics, 68(2), 397-440. https://doi.org/10.1007/s10640-016-0025-3 DOI: https://doi.org/10.1007/s10640-016-0025-3
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Koengkan, M.., Poveda, Y. E., Fuinhas, J. A. (2019). Globalisation as a Motor of Renewable Energy Development in Latin America Countries. GeoJournal, 1-12. https://doi.org/10.1007/s10708-019-10042-0 DOI: https://doi.org/10.1007/s10708-019-10042-0
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672
McGovern, A., Elmore, K. L., Gagne, D. J. II., Haupt, S. E., Karstens, C. D. (2017). Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bulletin of the American Meteorological Society, 98(10), 2073-2090. https://doi.org/10.1175/BAMS-D-16-0123.1 DOI: https://doi.org/10.1175/BAMS-D-16-0123.1
Pérez de Arce, M., Sauma, E. (2016). Comparison of Incentive Policies for Renewable Energy in an Oligopolistic Market with Price-Responsive Demand. The Energy Journal, 37(3). https://doi.org/10.5547/01956574.37.3.mdea DOI: https://doi.org/10.5547/01956574.37.3.mdea
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94
Tlili, I. (2015). Renewable Energy in Saudi Arabia: Current Status and Future Potentials. Environment, Development and Sustainability, 17(4), 859-886. https://doi.org/10.1007/s10668-014-9579-9 DOI: https://doi.org/10.1007/s10668-014-9579-9
Vyas, A., Vyas, V. (2018). Study of Applications of Artificial Intelligence Algorithm for Analysis and Investigation of Hybrid Energy Systems to give Optimum Power Generation. IOP Conference Series. Earth and Environmental Science, 168(1). https://doi.org/10.1088/1755-1315/168/1/012004 DOI: https://doi.org/10.1088/1755-1315/168/1/012004
Wei, X., Zhang, J. (2017). Research on Renewable Energy Power Generation Complementarity and Storage Distribution Model. IOP Conference Series. Earth and Environmental Science, 52(1). https://doi.org/10.1088/1742-6596/52/1/012042 DOI: https://doi.org/10.1088/1742-6596/52/1/012042
Xu, Y., Ahokangas, P., Jean-Nicolas, L., Pongrácz, E. (2019). Electricity Market Empowered by Artificial Intelligence: A Platform Approach. Energies, 12(21). https://doi.org/10.3390/en12214128 DOI: https://doi.org/10.3390/en12214128
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Pavan Kumar Gade
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.