Machine Learning-Driven Gamification: Boosting User Engagement in Business

Authors

  • Kazi Ahmed Farhan Assistant Professor, School of Business, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
  • A B M Asadullah Research Fellow, Kulliyyah of Economics & Management Sciences, International Islamic University Malaysia (IIUM), Kuala Lumpur, 53100, Malaysia
  • Hari Priya Kommineni Software Engineer, Marriott International, 7750 Wisconsin Ave, Bethesda, MD 20814, USA
  • Pavan Kumar Gade Software Developer, City National Bank, Los Angeles, CA, USA
  • Satya Surya MKLG Gudimetla Naga Venkata Sr Business Application Analyst, 1 Hormel Place, Austin, MN 55912, USA

DOI:

https://doi.org/10.18034/gdeb.v12i1.774

Keywords:

Machine Learning, Gamification, User Engagement, Behavior Prediction, Data Privacy, Reward Optimization, Algorithmic Bias, Adaptive Systems, Business Strategy

Abstract

This research shows personalized, adaptive, and data-driven machine learning-driven gamification may improve corporate user engagement. The goal is to study how machine learning (ML) may improve classic gamified systems by providing personalized challenges, improved reward structures, and predictive insights to maintain interest. This study synthesizes existing machine learning and gamification literature using secondary data to identify critical trends, difficulties, and future directions. ML allows deep customization and behavior prediction, which is crucial for user pleasure and engagement. Data privacy and algorithmic bias pose ethical and practical issues, highlighting the need for solid legislative frameworks. Transparent data methods, user control, and algorithmic fairness principles promote equal user experiences. As real-time adaptation, emotion detection, and immersive technologies emerge, machine learning-driven gamification will help contemporary businesses retain user engagement, loyalty, and satisfaction. This research allows companies to balance engagement innovation with data management to build ethical and successful gamification methods.

Downloads

Download data is not yet available.

References

Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96

Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.

Arifah, F. R., Zakaria, M. H. (2018). Asmaul Husna Learning through Gamifications and Adaptation of Signalling Principle. Journal of Physics: Conference Series, 1019(1). https://doi.org/10.1088/1742-6596/1019/1/012080 DOI: https://doi.org/10.1088/1742-6596/1019/1/012080

Barata, G., Gama, S., Jorge, J., Gonçalves, D. (2015). Gamification for Smarter Learning: Tales from the Trenches. Smart Learning Environments, 2(1), 1-23. https://doi.org/10.1186/s40561-015-0017-8 DOI: https://doi.org/10.1186/s40561-015-0017-8

Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.

Cui, X., Zhang, Z., Li, J. (2018). Redesigning Learning Space Based on Game Maps. Journal of Physics: Conference Series, 1069(1). https://doi.org/10.1088/1742-6596/1069/1/012003 DOI: https://doi.org/10.1088/1742-6596/1069/1/012003

Cui, X., Zhang, Z., Sun, L. (2017). Research and Implementation of Role-playing Teaching Mode Supported by Gamification. Journal of Physics: Conference Series, 887(1). https://doi.org/10.1088/1742-6596/887/1/012054 DOI: https://doi.org/10.1088/1742-6596/887/1/012054

Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762 DOI: https://doi.org/10.18034/apjee.v8i2.762

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770 DOI: https://doi.org/10.18034/abcjar.v10i2.770

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772 DOI: https://doi.org/10.18034/gdeb.v11i2.772

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769 DOI: https://doi.org/10.18034/gdeb.v10i2.769

Holzinger, A., Plass, M., Kickmeier-Rust, M., Holzinger, K., Crişan, G. C. (2019). Interactive Machine Learning: Experimental Evidence for the Human in the Algorithmic Loop. Applied Intelligence, 49(7), 2401-2414. https://doi.org/10.1007/s10489-018-1361-5 DOI: https://doi.org/10.1007/s10489-018-1361-5

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Klemke, R., Eradze, M., Antonaci, A. (2018). The Flipped MOOC: Using Gamification and Learning Analytics in MOOC Design-A Conceptual Approach. Education Sciences, 8(1), 25. https://doi.org/10.3390/educsci8010025 DOI: https://doi.org/10.3390/educsci8010025

Knutas, A., Roy, R. V., Hynninen, T., Granato, M., Kasurinen, J. (2019). A Process for Designing Algorithm-based Personalized Gamification. Multimedia Tools and Applications, 78(10), 13593-13612. https://doi.org/10.1007/s11042-018-6913-5 DOI: https://doi.org/10.1007/s11042-018-6913-5

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672

Li, C. H. (2019). Gamification of an Asynchronous HTML5-related Competency-based Guided Learning System. IOP Conference Series. Materials Science and Engineering, 658(1). https://doi.org/10.1088/1757-899X/658/1/012004 DOI: https://doi.org/10.1088/1757-899X/658/1/012004

Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771 DOI: https://doi.org/10.18034/apjee.v8i2.771

Su, C-h. (2016). The Effects of Students' Motivation, Cognitive Load and Learning Anxiety in Gamification Software Engineering Education: A Structural Equation Modeling Study. Multimedia Tools and Applications, 75(16), 10013-10036. https://doi.org/10.1007/s11042-015-2799-7 DOI: https://doi.org/10.1007/s11042-015-2799-7

Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159

Villagrá-Arnedo, C. J., Satorre-Cuerda, R., Compañ-Rosique, P., Molina-Carmona, R., Llorens-Largo, F. (2019). A Guide for Game-Design-Based Gamification. Informatics, 6(4), 49. https://doi.org/10.3390/informatics6040049 DOI: https://doi.org/10.3390/informatics6040049

Downloads

Published

2023-06-30

How to Cite

Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774

Similar Articles

71-80 of 136

You may also start an advanced similarity search for this article.