Data-Driven Business Intelligence in Energy Distribution: Analytics and Environment-Focused Approaches
DOI:
https://doi.org/10.18034/gdeb.v13i1.779Keywords:
Data-Driven Business Intelligence, Energy Distribution, Environmental Sustainability, Greenhouse Gas Emissions, Renewable Energy Integration, Smart Grid Technologies, Artificial IntelligenceAbstract
This research examines data-driven business intelligence (BI) in energy distribution, concentrating on analytics and environmental methods to improve efficiency and sustainability. The main goals are to explore how BI frameworks can integrate environmental metrics like greenhouse gas emissions, energy loss, and resource efficiency and how predictive analytics, AI, and edge computing can optimize energy distribution systems. The review uses secondary data from academic literature, case studies, and industry reports. Results show that energy distributors may make sustainable choices by integrating environmental parameters into BI frameworks, although data integration, real-time processing, and cybersecurity remain issues. To address these issues, AI, machine learning, and blockchain can improve data processing, grid management, and transparency. The research also recommends governmental interventions to standardize data standards, reinforce cybersecurity frameworks, and create data science and AI workforces. These policy consequences are essential for promoting BI technology adoption and guaranteeing efficient, environmentally friendly energy distribution networks. This research shows that data-driven BI may make energy distribution more sustainable and resilient, meeting global sustainability targets.
Downloads
References
Addimulam, S. (2024). Digitalization and AI for Sustainable Development: Expectations from the Sustainable Action Conference 2024 (SAC 2.0). Digitalization & Sustainability Review, 4(1), 1-15. https://upright.pub/index.php/dsr/article/view/156
Allam, A. R. (2023). Enhancing Cybersecurity in Distributed Systems: DevOps Approaches for Proactive Threat Detection. Silicon Valley Tech Review, 2(1), 54-66.
Allam, A. R., Farhan, K. A., Kommineni, H. P., Deming, C., & Boinapalli, N. R. (2024). Effective Change Management Strategies: Lessons Learned from Successful Organizational Transformations. American Journal of Trade and Policy, 11(1), 17-30. https://doi.org/10.18034/ajtp.v11i1.730
Boinapalli, N. R., Farhan, K. A., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). AI-Enhanced IMC: Leveraging Data Analytics for Targeted Marketing Campaigns. Asian Business Review, 13(3), 87-94. https://doi.org/10.18034/abr.v13i3.729
Brahimi, T. (2019). Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia. Energies, 12(24), 4669. https://doi.org/10.3390/en12244669
Chen, J., Zhang, K., Zhou, Y., Liu, Y., Li, L. (2019). Exploring the Development of Research, Technology, and Business of Machine Tool Domain in New-Generation Information Technology Environment Based on Machine Learning. Sustainability, 11(12). https://doi.org/10.3390/su11123316
Chitra, A., Rajpriya, R., Karras, D. A., Sridharlakshmi, N. R. B. (2024). An Exhaustive Study of Parasitic Organisms and Pathological Effects on Human Health. AVE Trends in Intelligent Health Letters, 1(1), 10-18. https://avepubs.com/user/journals/article_details/ATIHL/17
Cho, S., Lee, J., Baek, J., Kim, G-S., Seung-Bok, L. (2019). Investigating Primary Factors Affecting Electricity Consumption in Non-Residential Buildings Using a Data-Driven Approach. Energies, 12(21). https://doi.org/10.3390/en12214046
Chui, K. T., Lytras, M. D., Visvizi, A. (2018). Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies, 11(11). https://doi.org/10.3390/en11112869
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778
Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774
Farhan, K. A., Onteddu, A. R., Kothapalli, S., Manikyala, A., Boinapalli, N. R., & Kundavaram, R. R. (2024). Harnessing Artificial Intelligence to Drive Global Sustainability: Insights Ahead of SAC 2024 in Kuala Lumpur. Digitalization & Sustainability Review, 4(1), 16-29. https://upright.pub/index.php/dsr/article/view/161
Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
Karanam, R. K., Addimulam, S., Ahmmed, S., Natakam, V. M. (2024). The Role of Digital Transformation in Achieving Sustainability Goals: A Preview of SAC 2024 (2.0). American Digits: Journal of Computing and Digital Technologies, 2(1), 36-50.
Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123
Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
Liu, Z., Tsuda, T., Watanabe, H., Ryuo, S., Iwasawa, N. (2019). Data Driven Cyber-Physical System for Landslide Detection. Mobile Networks and Applications, 24(3), 991-1002. https://doi.org/10.1007/s11036-018-1031-1
Lokshina, I., Durkin, B., Lanting, C. (2018). The IoT- and Big Data-Driven Data Analysis Services: KM, Implications and Business Opportunities. International Journal of Knowledge Management, 14(4), 88-107. https://doi.org/10.4018/IJKM.2018100106
Mallipeddi, S. R. (2022). Harnessing AI and IoT Technologies for Sustainable Business Operations in the Energy Sector. Asia Pacific Journal of Energy and Environment, 9(1), 37-48. https://doi.org/10.18034/apjee.v9i1.735
Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773
McBride, N. (2015). Virtuous Business Intelligence. International Journal of Business Intelligence Research, 6(2), 1-17. https://doi.org/10.4018/IJBIR.2015070101
Mezouar, H., El Afia, A. (2019). Proposal for an Approach to Evaluate Continuity in Service Supply Chains: Case of the Moroccan Electricity Supply Chain. International Journal of Electrical and Computer Engineering, 9(6), 5552-5559. https://doi.org/10.11591/ijece.v9i6.pp5552-5559
Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.
Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
Pasam, P., Kothapalli, K. R. V., Mohammed, R., Miah, M. S., Addimulam, S. (2024). Financial Engineering and AI: Developing Predictive Models for Market Volatility. Asian Business Review, 14(1), 43-52. https://doi.org/10.18034/abr.v14i1.724
Rahman, K., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). Leveraging AI for Chronic Disease Management: A New Horizon in Medical Research. Malaysian Journal of Medical and Biological Research, 9(2), 81-90. https://mjmbr.my/index.php/mjmbr/article/view/691
Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163
Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.
Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771
Sridharlakshmi, N. R. B., Karanam, R. K., Boinapalli, N. R., Allam, A. R., & Rodriguez, M. (2024). Big Data Analytics for Business Management: Driving Innovation and Competitive Advantage. Asian Business Review, 14(1), 71-84. https://doi.org/10.18034/abr.v14i1.728
Sun, A. Y., Scanlon, B. R. (2019). How can Big Data and Machine Learning Benefit Environment and Water Management: A Survey of Methods, Applications, and Future Directions. Environmental Research Letters, 14(7). https://doi.org/10.1088/1748-9326/ab1b7d
Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.
Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164
Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
Venkata, S. S. M. G. N. (2023). AI-Driven Data Engineering for Real-Time Public Health Surveillance and Early Outbreak Detection. Engineering International, 11(2), 85-98. https://doi.org/10.18034/ei.v11i2.732
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Xu, Y., Ahokangas, P., Jean-Nicolas, L., Pongrácz, E. (2019). Electricity Market Empowered by Artificial Intelligence: A Platform Approach. Energies, 12(21). https://doi.org/10.3390/en12214128
Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-88. https://doi.org/10.18034/apjee.v9i2.753
Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends in Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research, 11(2), 115-126. https://doi.org/10.18034/abcjar.v11i2.757
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hari Priya Kommineni; Pavan Kumar Gade; Satya Surya MKLG Gudimetla Naga Venkata; Aditya Manikyala
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.