Supply Chain Optimization: Machine Learning Applications in Inventory Management for E-Commerce
DOI:
https://doi.org/10.18034/gdeb.v13i1.758Keywords:
Supply Chain Optimization, Machine Learning, Inventory Management, E-Commerce, Artificial Intelligence, Demand Prediction, Inventory OptimizationAbstract
This study delves into the potential impact of machine learning (ML) on supply chain optimization and inventory management for e-commerce. Our primary focus is analyzing the accuracy of demand forecasting, optimizing inventory levels, and evaluating the impact of real-time decision-making on supply chain efficiency. Using a secondary data-based review methodology, this study explores the implementation of advanced predictive analytics, real-time data processing, autonomous operations, and personalized customer experiences in prominent e-commerce companies like Amazon, Walmart, and Alibaba. Our findings show impressive advancements in demand forecasting accuracy, dynamic inventory management, and operational responsiveness. These improvements have led to cost savings and increased customer satisfaction. Nevertheless, some drawbacks exist, such as the significant expenses associated with implementation, concerns about data privacy, and the potential for overfitting the model. Policy implications call for solid data protection regulations, financial assistance for smaller businesses, and ethical guidelines for AI to promote fair and responsible machine learning applications. By tackling these obstacles, companies can maximize the potential of ML technologies to enhance efficiency, promote sustainability, and gain a competitive edge in the ever-changing world of e-commerce.
Downloads
References
Ahmmed. S., Sachani, D. K., Natakam, V. M., Karanam, R. K. (2021). Stock Market Fluctuations and Their Immediate Impact on GDP. Journal of Fareast International University, 4(1), 1-6. https://www.academia.edu/121248146
Akter, S., Wamba, S. F. (2016). Big Data Analytics in E-commerce: A Systematic Review and Agenda for Future Research. Electronic Markets, 26(2), 173-194. https://doi.org/10.1007/s12525-016-0219-0 DOI: https://doi.org/10.1007/s12525-016-0219-0
Anand, T., Pandian, R. S., Farouk, M., Sachani, D. K., Sudha, P. (2023). A Customer-Based Supply Chain Management Advance Technology in the Process Industry. FMDB Transactions on Sustainable Management Letters, 1(4), 168-180. https://www.fmdbpub.com/user/journals/article_details/FTSML/147
Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020). Unveiling the Influence of Artificial Intelligence on Resource Management and Sustainable Development: A Comprehensive Investigation. Technology & Management Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145
Chen, Y-k., Chiu, F-r., Liao, H-c., Yeh, C-h. (2016). Joint Optimization of Inventory Control and Product Placement on E-commerce Websites Using Genetic Algorithms. Electronic Commerce Research, 16(4), 479-502. https://doi.org/10.1007/s10660-016-9216-9 DOI: https://doi.org/10.1007/s10660-016-9216-9
Choe, J-m. (2018). Electronic Commerce, MCSs Change, and the Improvement of Supply-chain Performance.n Global Business & Finance Review, 23(2), 30-48. https://doi.org/10.17549/gbfr.2018.23.2.30 DOI: https://doi.org/10.17549/gbfr.2018.23.2.30
Fomin, V. V., King, J. L., Lyytinen, K. J., McGann, S. T. (2005). Diffusion and Impacts of E-Commerce in the United States of America: Results from an Industry Survey. Communications of the Association for Information Systems, 16(28). https://doi.org/10.17705/1CAIS.01628 DOI: https://doi.org/10.17705/1CAIS.01628
Karanam, R. K., Sachani, D. K., Natakam, V. M., Yarlagadda, V. K., & Kothapalli, K. R. V. (2024). Resilient Supply Chains: Strategies for Managing Disruptions in a Globalized Economy. American Journal of Trade and Policy, 11(1), 7–16. https://doi.org/10.18034/ajtp.v11i1.719 DOI: https://doi.org/10.18034/ajtp.v11i1.719
Khair, M. A., Tejani, J. G., Sandu, A. K., & Shajahan, M. A. (2020). Trade Policies and Entrepreneurial Initiatives: A Nexus for India’s Global Market Integration. American Journal of Trade and Policy, 7(3), 107–114. https://doi.org/10.18034/ajtp.v7i3.706 DOI: https://doi.org/10.18034/ajtp.v7i3.706
Kim, H. M. (2000). Enabling Integrated Decision Making for Electronic Commerce by Modelling an Enterprise's Sharable Knowledge. Internet Research, 10(5), 418-423. https://doi.org/10.1108/10662240010349435 DOI: https://doi.org/10.1108/10662240010349435
Landset, S., Khoshgoftaar, T. M., Richter, A. N., Hasanin, T. (2015). A Survey of Open Source Tools for Machine Learning with Big Data in the Hadoop Ecosystem. Journal of Big Data, 2(1), 1-36. https://doi.org/10.1186/s40537-015-0032-1 DOI: https://doi.org/10.1186/s40537-015-0032-1
Li, L., Ting, C., Hao, T., Yu, T. (2018). Customer Demand Analysis of the Electronic Commerce Supply Chain using Big Data. Annals of Operations Research, 268(1-2), 113-128. https://doi.org/10.1007/s10479-016-2342-x DOI: https://doi.org/10.1007/s10479-016-2342-x
Li, M., Ji, S., Liu, G. (2018). Forecasting of Chinese E-Commerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive Neural Network, and a Combined ARIMA-NARNN Model. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/6924960 DOI: https://doi.org/10.1155/2018/6924960
Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., & Richardson, N. (2017). Machine Learning-Based Real-Time Fraud Detection in Financial Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76. https://4ajournal.com/article/view/93
Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755 DOI: https://doi.org/10.18034/abcjar.v7i2.755
Mullangi, K., Anumandla, S. K. R., Maddula, S. S., Vennapusa, S. C. R., & Mohammed, M. A. (2018). Accelerated Testing Methods for Ensuring Secure and Efficient Payment Processing Systems. ABC Research Alert, 6(3), 202–213. https://doi.org/10.18034/ra.v6i3.662 DOI: https://doi.org/10.18034/ra.v6i3.662
Mullangi, K., Dhameliya, N., Anumandla, S. K. R., Yarlagadda, V. K., Sachani, D. K., Vennapusa, S. C. R., Maddula, S. S., & Patel, B. (2023). AI-Augmented Decision-Making in Management Using Quantum Networks. Asian Business Review, 13(2), 73–86. https://doi.org/10.18034/abr.v13i2.718 DOI: https://doi.org/10.18034/abr.v13i2.718
Mullangi, K., Yarlagadda, V. K., Dhameliya, N., & Rodriguez, M. (2018). Integrating AI and Reciprocal Symmetry in Financial Management: A Pathway to Enhanced Decision-Making. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 42-52. https://upright.pub/index.php/ijrstp/article/view/134
Natakam, V. M., Nizamuddin, M., Tejani, J. G., Yarlagadda, V. K., Sachani, D. K., & Karanam, R. K. (2022). Impact of Global Trade Dynamics on the United States Rubber Industry. American Journal of Trade and Policy, 9(3), 131–140. https://doi.org/10.18034/ajtp.v9i3.716 DOI: https://doi.org/10.18034/ajtp.v9i3.716
Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., & Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751 DOI: https://doi.org/10.18034/ajhal.v6i2.751
Patel, B., Yarlagadda, V. K., Dhameliya, N., Mullangi, K., & Vennapusa, S. C. R. (2022). Advancements in 5G Technology: Enhancing Connectivity and Performance in Communication Engineering. Engineering International, 10(2), 117–130. https://doi.org/10.18034/ei.v10i2.715 DOI: https://doi.org/10.18034/ei.v10i2.715
Pydipalli, R., Anumandla, S. K. R., Dhameliya, N., Thompson, C. R., Patel, B., Vennapusa, S. C. R., Sandu, A. K., & Shajahan, M. A. (2022). Reciprocal Symmetry and the Unified Theory of Elementary Particles: Bridging Quantum Mechanics and Relativity. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 1-9. https://upright.pub/index.php/ijrstp/article/view/138
Qiu, J., Lin, Z., Li, Y. (2015). Predicting Customer Purchase Behavior in the E-commerce Context. Electronic Commerce Research, 15(4), 427-452. https://doi.org/10.1007/s10660-015-9191-6 DOI: https://doi.org/10.1007/s10660-015-9191-6
Richardson, N., Pydipalli, R., Maddula, S. S., Anumandla, S. K. R., & Vamsi Krishna Yarlagadda. (2019). Role-Based Access Control in SAS Programming: Enhancing Security and Authorization. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 31-42. https://upright.pub/index.php/ijrstp/article/view/133
Sachani, D. K. (2018). Technological Advancements in Retail Kiosks: Enhancing Operational Efficiency and Consumer Engagement. American Journal of Trade and Policy, 5(3), 161–168. https://doi.org/10.18034/ajtp.v5i3.714 DOI: https://doi.org/10.18034/ajtp.v5i3.714
Sachani, D. K. (2020). Assessing the Impact of Brand Loyalty on Tobacco Purchasing Decisions and Spending Patterns. ABC Research Alert, 8(3), 147–159. https://doi.org/10.18034/ra.v8i3.661 DOI: https://doi.org/10.18034/ra.v8i3.661
Sachani, D. K. (2023). The Role of Kiosks in Omni-Channel Retail Strategies: A Market Perspective. American Digits: Journal of Computing and Digital Technologies, 1(1), 62-75.
Sachani, D. K., & Vennapusa, S. C. R. (2017). Destination Marketing Strategies: Promoting Southeast Asia as a Premier Tourism Hub. ABC Journal of Advanced Research, 6(2), 127-138. https://doi.org/10.18034/abcjar.v6i2.746 DOI: https://doi.org/10.18034/abcjar.v6i2.746
Sachani, D. K., Anumandla, S. K. R., Maddula, S. S. (2022). Human Touch in Retail: Analyzing Customer Loyalty in the Era of Self-Checkout Technology. Silicon Valley Tech Review, 1(1), 1-13.
Sachani, D. K., Dhameliya, N., Mullangi, K., Anumandla, S. K. R., & Vennapusa, S. C. R. (2021). Enhancing Food Service Sales through AI and Automation in Convenience Store Kitchens. Global Disclosure of Economics and Business, 10(2), 105-116. https://doi.org/10.18034/gdeb.v10i2.754 DOI: https://doi.org/10.18034/gdeb.v10i2.754
Shajahan, M. A., Richardson, N., Dhameliya, N., Patel, B., Anumandla, S. K. R., & Yarlagadda, V. K. (2019). AUTOSAR Classic vs. AUTOSAR Adaptive: A Comparative Analysis in Stack Development. Engineering International, 7(2), 161–178. https://doi.org/10.18034/ei.v7i2.711 DOI: https://doi.org/10.18034/ei.v7i2.711
Shukla, M., Jharkharia, S. (2013). Agri-fresh Produce Supply Chain Management: A State-of-the-art Literature Review. International Journal of Operations & Production Management, 33(2), 114-158. https://doi.org/10.1108/01443571311295608 DOI: https://doi.org/10.1108/01443571311295608
Susilo, F. A., Triana, Y. S. (2018). Digital Supply Chain Development in Blockchain Technology using Rijndael Algorithm 256. IOP Conference Series. Materials Science and Engineering, 453(1). https://doi.org/10.1088/1757-899X/453/1/012075 DOI: https://doi.org/10.1088/1757-899X/453/1/012075
Vennapusa, S. C. R., Fadziso, T., Sachani, D. K., Yarlagadda, V. K., & Anumandla, S. K. R. (2018). Cryptocurrency-Based Loyalty Programs for Enhanced Customer Engagement. Technology & Management Review, 3, 46-62. https://upright.pub/index.php/tmr/article/view/137
Vennapusa, S. C. R., Pydipalli, R., Anumandla, S. K. R., Pasam, P. (2022). Innovative Chemistry in Rubber Recycling: Transforming Waste into High-Value Products. Digitalization & Sustainability Review, 2(1), 30-42.
Yang, Q., Hu, X., Cheng, Z., Kang, M. (2014). Machine Learning Based Prediction and Prevention of Malicious Inventory Occupied Orders. International Journal of Mobile Computing and Multimedia Communications, 6(4), 56-72. https://doi.org/10.4018/IJMCMC.2014100104 DOI: https://doi.org/10.4018/IJMCMC.2014100104
Yarlagadda, V. K. (2023). Innovative AI Solutions for Defect Detection in Rubber Manufacturing Processes. Silicon Valley Tech Review, 2(1), 13-26.
Yarlagadda, V. K. (2024). Cutting-edge developments in Robotics for Smart Warehousing and Logistics Optimization. Robotics Xplore: USA Automation Digest, 1(1), 61-79.
Yarlagadda, V. K., & Pydipalli, R. (2018). Secure Programming with SAS: Mitigating Risks and Protecting Data Integrity. Engineering International, 6(2), 211–222. https://doi.org/10.18034/ei.v6i2.709 DOI: https://doi.org/10.18034/ei.v6i2.709
Yarlagadda, V. K., Maddula, S. S., Sachani, D. K., Mullangi, K., Anumandla, S. K. R., & Patel, B. (2020). Unlocking Business Insights with XBRL: Leveraging Digital Tools for Financial Transparency and Efficiency. Asian Accounting and Auditing Advancement, 11(1), 101–116. https://4ajournal.com/article/view/94
Ying, D., Kothapalli, K. R. V., Mohammed, M. A., Mohammed, R., & Pasam, P. (2018). Building Secure and Scalable Applications on Azure Cloud: Design Principles and Architectures. Technology & Management Review, 3, 63-76. https://upright.pub/index.php/tmr/article/view/149
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ferdouse Ara Tuli; Manzoor Anwar Mohammed; Dipakkumar Kanubhai Sachani
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.