Machine Learning-Driven Gamification: Boosting User Engagement in Business
DOI:
https://doi.org/10.18034/gdeb.v12i1.774Keywords:
Machine Learning, Gamification, User Engagement, Behavior Prediction, Data Privacy, Reward Optimization, Algorithmic Bias, Adaptive Systems, Business StrategyAbstract
This research shows personalized, adaptive, and data-driven machine learning-driven gamification may improve corporate user engagement. The goal is to study how machine learning (ML) may improve classic gamified systems by providing personalized challenges, improved reward structures, and predictive insights to maintain interest. This study synthesizes existing machine learning and gamification literature using secondary data to identify critical trends, difficulties, and future directions. ML allows deep customization and behavior prediction, which is crucial for user pleasure and engagement. Data privacy and algorithmic bias pose ethical and practical issues, highlighting the need for solid legislative frameworks. Transparent data methods, user control, and algorithmic fairness principles promote equal user experiences. As real-time adaptation, emotion detection, and immersive technologies emerge, machine learning-driven gamification will help contemporary businesses retain user engagement, loyalty, and satisfaction. This research allows companies to balance engagement innovation with data management to build ethical and successful gamification methods.
Downloads
References
Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
Arifah, F. R., Zakaria, M. H. (2018). Asmaul Husna Learning through Gamifications and Adaptation of Signalling Principle. Journal of Physics: Conference Series, 1019(1). https://doi.org/10.1088/1742-6596/1019/1/012080 DOI: https://doi.org/10.1088/1742-6596/1019/1/012080
Barata, G., Gama, S., Jorge, J., Gonçalves, D. (2015). Gamification for Smarter Learning: Tales from the Trenches. Smart Learning Environments, 2(1), 1-23. https://doi.org/10.1186/s40561-015-0017-8 DOI: https://doi.org/10.1186/s40561-015-0017-8
Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
Cui, X., Zhang, Z., Li, J. (2018). Redesigning Learning Space Based on Game Maps. Journal of Physics: Conference Series, 1069(1). https://doi.org/10.1088/1742-6596/1069/1/012003 DOI: https://doi.org/10.1088/1742-6596/1069/1/012003
Cui, X., Zhang, Z., Sun, L. (2017). Research and Implementation of Role-playing Teaching Mode Supported by Gamification. Journal of Physics: Conference Series, 887(1). https://doi.org/10.1088/1742-6596/887/1/012054 DOI: https://doi.org/10.1088/1742-6596/887/1/012054
Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762 DOI: https://doi.org/10.18034/apjee.v8i2.762
Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770 DOI: https://doi.org/10.18034/abcjar.v10i2.770
Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772 DOI: https://doi.org/10.18034/gdeb.v11i2.772
Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769 DOI: https://doi.org/10.18034/gdeb.v10i2.769
Holzinger, A., Plass, M., Kickmeier-Rust, M., Holzinger, K., Crişan, G. C. (2019). Interactive Machine Learning: Experimental Evidence for the Human in the Algorithmic Loop. Applied Intelligence, 49(7), 2401-2414. https://doi.org/10.1007/s10489-018-1361-5 DOI: https://doi.org/10.1007/s10489-018-1361-5
Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
Klemke, R., Eradze, M., Antonaci, A. (2018). The Flipped MOOC: Using Gamification and Learning Analytics in MOOC Design-A Conceptual Approach. Education Sciences, 8(1), 25. https://doi.org/10.3390/educsci8010025 DOI: https://doi.org/10.3390/educsci8010025
Knutas, A., Roy, R. V., Hynninen, T., Granato, M., Kasurinen, J. (2019). A Process for Designing Algorithm-based Personalized Gamification. Multimedia Tools and Applications, 78(10), 13593-13612. https://doi.org/10.1007/s11042-018-6913-5 DOI: https://doi.org/10.1007/s11042-018-6913-5
Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97
Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663 DOI: https://doi.org/10.18034/ra.v7i3.663
Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672 DOI: https://doi.org/10.18034/ra.v6i3.672
Li, C. H. (2019). Gamification of an Asynchronous HTML5-related Competency-based Guided Learning System. IOP Conference Series. Materials Science and Engineering, 658(1). https://doi.org/10.1088/1757-899X/658/1/012004 DOI: https://doi.org/10.1088/1757-899X/658/1/012004
Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771 DOI: https://doi.org/10.18034/apjee.v8i2.771
Su, C-h. (2016). The Effects of Students' Motivation, Cognitive Load and Learning Anxiety in Gamification Software Engineering Education: A Structural Equation Modeling Study. Multimedia Tools and Applications, 75(16), 10013-10036. https://doi.org/10.1007/s11042-015-2799-7 DOI: https://doi.org/10.1007/s11042-015-2799-7
Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.
Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94 DOI: https://doi.org/10.18034/ajase.v8i1.94
Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159
Villagrá-Arnedo, C. J., Satorre-Cuerda, R., Compañ-Rosique, P., Molina-Carmona, R., Llorens-Largo, F. (2019). A Guide for Game-Design-Based Gamification. Informatics, 6(4), 49. https://doi.org/10.3390/informatics6040049 DOI: https://doi.org/10.3390/informatics6040049
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Kazi Ahmed Farhan; A B M Asadullah; Hari Priya Kommineni; Pavan Kumar Gade; Satya Surya MKLG Gudimetla Naga Venkata
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.