Handling Instance Spanning Constraints in Compliance Management
DOI:
https://doi.org/10.18034/abcjar.v8i2.522Keywords:
Spanning constraints, compliance management, ISCAbstract
Instance spanning constraints refers to instruments to establish controls during multiple instances in or several processes. Many business entities crave an established ISC support system. Take, for instance, the bundling and unbundling of cargo from various logistics processes or the dependence of various examinations in medical treatment systems. During such systems, non-compliance with the ISC would lead to immense consequences and penalties, which can be fatal if it occurs in the medical field. ISC can also occur from process execution logs. Business execution store execution information for the process instance and, consequently, the characteristics of the execution logs. Discovering ISC early enough helps in supporting ISC design and execution. The purpose of this study is to contribute towards the categorization of the ISC and hence contribute to the digitalized ISC and its compliance management.
Downloads
References
Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn. Cambridge University Press, New York (2010) DOI: https://doi.org/10.1017/CBO9781139195881
Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 106–118. Springer, Heidelberg (2010) DOI: https://doi.org/10.1007/978-3-642-12814-1_10
Boubaker, S., Gaaloul, W., Graiet, M., Hadj-Alouane, N.B.: Event-b based approach for verifying cloud resource allocation in business process. In: International Conference on Services Computing, pp. 538–545 (2015) DOI: https://doi.org/10.1109/SCC.2015.79
Donepudi, P. K. (2015). Crossing Point of Artificial Intelligence in Cybersecurity. American Journal of Trade and Policy, 2(3), 121-128. https://doi.org/10.18034/ajtp.v2i3.49 DOI: https://doi.org/10.18034/ajtp.v2i3.493
Donepudi, P. K. (2016). Influence of Cloud Computing in Business: Are They Robust?. Asian Journal of Applied Science and Engineering, 5(3), 193–196. http://doi.org/10.5281/zenodo.4110309
Donepudi, P. K. (2017). Machine Learning and Artificial Intelligence in Banking. Engineering International, 5(2), 83-86. https://doi.org/10.18034/ei.v5i2.490 DOI: https://doi.org/10.18034/ei.v5i2.490
Donepudi, P. K. (2018). AI and Machine Learning in Retail Pharmacy: Systematic Review of Related Literature. ABC Journal of Advanced Research, 7(2), 109-112. https://doi.org/10.18034/abcjar.v7i2.514 DOI: https://doi.org/10.18034/abcjar.v7i2.514
Ghose, A., Koliadis, G.: Auditing business process compliance. In: International Conference on Service-Oriented Computing, pp. 169–180 (2007) DOI: https://doi.org/10.1007/978-3-540-74974-5_14
Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M., Yu, Y.: Checking cache-coherence protocols with TLA++ . Form. Methods Syst. Des. 22(2), 125–131 (2003) DOI: https://doi.org/10.1023/A:1022969405325
Kaes, G., RinderleMa, S., Vigne, R., Mangler, J.: Flexibility requirements in real-world process scenarios and prototypical realization in the care domain. In: OTM Workshops, pp. 55–64 (2014) DOI: https://doi.org/10.1007/978-3-662-45550-0_8
Knuplesch, D., Reichert, M., Kumar, A.: Visually monitoring multiple perspectives of business process compliance. In: International Conference on Business Process Management, pp. 263–279 (2015) DOI: https://doi.org/10.1007/978-3-319-23063-4_19
Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and enactment of instance-spanning process constraints. In: International Conference on Web Information Systems Engineering, pp. 652–658 (2012) DOI: https://doi.org/10.1007/978-3-642-35063-4_49
Lenzi, G.: The modal μμ -calculus: a survey. Task Q. 9(3), 293–316 (2005)
Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.: Monitoring business constraints with linear temporal logic: an approach based on colored automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147. Springer, Heidelberg (2011) DOI: https://doi.org/10.1007/978-3-642-23059-2_13
Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. ACM Trans. Intell. Syst. Technol. 5(1), 1–30 (2014) DOI: https://doi.org/10.1145/2542182.2542199
Sadiq, W., Governatori, G., Namiri, K.: Modeling control objectives for business process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007) DOI: https://doi.org/10.1007/978-3-540-75183-0_12
--0--