Java in Robotics: Bridging Software Development and Hardware Control

Authors

  • Kanaka Rakesh Varma Kothapalli Consultant, Regulatory Reporting, BHCRR Adenza Project, Mizuho Group, Yotta Systems Inc., New Jersey, USA

DOI:

https://doi.org/10.18034/abcjar.v12i1.761

Keywords:

Java Robotics, Software Development, Robot Programming, Java APIs for Robotics, Embedded Systems, Robotic System Integration

Abstract

This research examines how Java bridges robotics software development with hardware control. The main goals are to assess Java's performance in robotic system integration, identify its drawbacks, and suggest ways to improve it. JRobotics, LeJOS, and ROSJava, are reviewed using secondary data to determine their effects on hardware interface, real-time performance, and data processing. According to major studies, Java's platform freedom and modularity enable software and hardware integration. Real-time performance, hardware interface, and memory management remain issues. The Real-Time Specification for Java (RTSJ) and specialized libraries provide partial solutions but need additional development. Policy implications include investing in Java library improvements and improving Java developer-robotics researcher cooperation. Research and optimization will improve Java's position in robotics, making robots more efficient and versatile.

Downloads

Download data is not yet available.

References

Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687

Ahmmed. S., Sachani, D. K., Natakam, V. M., Karanam, R. K. (2021). Stock Market Fluctuations and Their Immediate Impact on GDP. Journal of Fareast International University, 4(1), 1-6. https://www.academia.edu/121248146

Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020). Unveiling the Influence of Artificial Intelligence on Resource Management and Sustainable Development: A Comprehensive Investigation. Technology & Management Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145

Chaos, D., Chacón, J., Lopez-Orozco, J. A., Dormido, S. (2013). Virtual and Remote Robotic Laboratory Using EJS, MATLAB and LabVIEW. Sensors, 13(2), 2595-2612. https://doi.org/10.3390/s130202595 DOI: https://doi.org/10.3390/s130202595

Fadziso, T., Mohammed, R., Kothapalli, K. R. V., Mohammed, M. A., Karanam, R. K. (2022). Deep Learning Approaches for Signal and Image Processing: State-of-the-Art and Future Directions. Silicon Valley Tech Review, 1(1), 14-34.

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kothapalli, K. R. V. (2019). Enhancing DevOps with Azure Cloud Continuous Integration and Deployment Solutions. Engineering International, 7(2), 179-192. DOI: https://doi.org/10.18034/ei.v7i2.721

Kothapalli, K. R. V. (2022). Exploring the Impact of Digital Transformation on Business Operations and Customer Experience. Global Disclosure of Economics and Business, 11(2), 103-114. https://doi.org/10.18034/gdeb.v11i2.760 DOI: https://doi.org/10.18034/gdeb.v11i2.760

Kothapalli, K. R. V., Tejani, J. G., Rajani Pydipalli, R. (2021). Artificial Intelligence for Microbial Rubber Modification: Bridging IT and Biotechnology. Journal of Fareast International University, 4(1), 7-16.

Liang, S. N., Tan, K. O., Lai Clement, T. H., Ng, S. K., Ali Mohammed, A. H. (2016). Open Source Hardware and Software Platform for Robotics and Artificial Intelligence Applications. IOP Conference Series. Materials Science and Engineering, 114(1). https://doi.org/10.1088/1757-899X/114/1/012142 DOI: https://doi.org/10.1088/1757-899X/114/1/012142

Linares-Barranco, A., Liu, H., Rios-Navarro, A., Gomez-Rodriguez, F., Moeys, D. P. (2018). Approaching Retinal Ganglion Cell Modeling and FPGA Implementation for Robotics. Entropy, 20(6). https://doi.org/10.3390/e20060475 DOI: https://doi.org/10.3390/e20060475

Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., & Richardson, N. (2017a). Machine Learning-Based Real-Time Fraud Detection in Financial Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76. https://4ajournal.com/article/view/93

Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755 DOI: https://doi.org/10.18034/abcjar.v7i2.755

Mohammed, R. & Pasam, P. (2020). Autonomous Drones for Advanced Surveillance and Security Applications in the USA. NEXG AI Review of America, 1(1), 32-53.

Mohammed, R. (2021). Code Refactoring Strategies for Enhancing Robotics Software Maintenance. International Journal of Reciprocal Symmetry and Theoretical Physics, 8, 41-50. https://upright.pub/index.php/ijrstp/article/view/152

Mohammed, R. (2022). Artificial Intelligence-Driven Robotics for Autonomous Vehicle Navigation and Safety. NEXG AI Review of America, 3(1), 21-47.

Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P., & Natakam, V. M. (2017). Optimizing Web Performance: Front End Development Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142

Nagyová, I. (2014). Lego Mindstorms in the Teaching of Java Programming. Journal of Technology and Information Education, 6(2), 17-24. https://doi.org/10.5507/jtie.2014.012 DOI: https://doi.org/10.5507/jtie.2014.012

Natakam, V. M., Nizamuddin, M., Tejani, J. G., Yarlagadda, V. K., Sachani, D. K., & Karanam, R. K. (2022). Impact of Global Trade Dynamics on the United States Rubber Industry. American Journal of Trade and Policy, 9(3), 131–140. https://doi.org/10.18034/ajtp.v9i3.716 DOI: https://doi.org/10.18034/ajtp.v9i3.716

Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., & Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751 DOI: https://doi.org/10.18034/ajhal.v6i2.751

Osunmakinde, I., Vikash, R. (2014). Development of a Survivable Cloud Multi-Robot Framework for Heterogeneous Environments. International Journal of Advanced Robotic Systems, 11(10). https://doi.org/10.5772/58891 DOI: https://doi.org/10.5772/58891

Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151

Sadik, A. R., Urban, B. (2017). An Ontology-Based Approach to Enable Knowledge Representation and Reasoning in Worker-Cobot Agile Manufacturing. Future Internet, 9(4), 90. https://doi.org/10.3390/fi9040090 DOI: https://doi.org/10.3390/fi9040090

Steed, C. A. (2019). A Simulation-based Approach to Develop a Holonic Robotic Cell. The Industrial Robot, 46(1), 128-134. https://doi.org/10.1108/IR-07-2018-0149 DOI: https://doi.org/10.1108/IR-07-2018-0149

Tang, Y. L., Du, H. (2014). Feasibility Study on the Method of Java Combined with OSG. Applied Mechanics and Materials, 536-537, 607-610. https://doi.org/10.4028/www.scientific.net/AMM.536-537.607 DOI: https://doi.org/10.4028/www.scientific.net/AMM.536-537.607

Vagaš, M., Sukop, M., Varga, J. (2016). Design and Implementation of Remote Lab with Industrial Robot Accessible through the Web. Applied Mechanics and Materials, 859, 67-73. https://doi.org/10.4028/www.scientific.net/AMM.859.67 DOI: https://doi.org/10.4028/www.scientific.net/AMM.859.67

Valera, A., Gomez-Moreno, J., Sánchez, A., Ricolfe-Viala, C., Zotovic, R. (2012). Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories. International Journal of Advanced Robotic Systems, 9(4). https://doi.org/10.5772/51373 DOI: https://doi.org/10.5772/51373

Vennapusa, S. C. R., Pydipalli, R., Anumandla, S. K. R., Pasam, P. (2022). Innovative Chemistry in Rubber Recycling: Transforming Waste into High-Value Products. Digitalization & Sustainability Review, 2(1), 30-42.

Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-88. https://doi.org/10.18034/apjee.v9i2.753 DOI: https://doi.org/10.18034/apjee.v9i2.753

Ying, D., Kothapalli, K. R. V., Mohammed, M. A., Mohammed, R., & Pasam, P. (2018). Building Secure and Scalable Applications on Azure Cloud: Design Principles and Architectures. Technology & Management Review, 3, 63-76. https://upright.pub/index.php/tmr/article/view/149

Ying, D., Pasam, P., Addimulam, S., & Natakam, V. M. (2022). The Role of Polymer Blends in Enhancing the Properties of Recycled Rubber. ABC Journal of Advanced Research, 11(2), 115-126. https://doi.org/10.18034/abcjar.v11i2.757 DOI: https://doi.org/10.18034/abcjar.v11i2.757

Downloads

Published

2023-03-28

How to Cite

Kothapalli, K. R. V. (2023). Java in Robotics: Bridging Software Development and Hardware Control. ABC Journal of Advanced Research, 12(1), 17-30. https://doi.org/10.18034/abcjar.v12i1.761

Similar Articles

11-20 of 75

You may also start an advanced similarity search for this article.