AI-Driven Optimization Techniques for Evolving Software Architecture in Complex Systems

Authors

  • Nicholas Richardson Software Engineer, JPMorgan Chase, 10 S Dearborn St, Chicago, IL 60603, USA
  • Srinikhita Kothapalli Sr. Software Engineer, Anagha Solutions Inc., Leander, Texas 78641, USA
  • Abhishake Reddy Onteddu Cloud DevOps Engineer, Pearson, Chicago, IL, USA
  • RamMohan Reddy Kundavaram Senior full Stack Developer (MERN-Stack), Silicon Valley Bank, Arizona Tempe, Chicago, IL, USA
  • Rajasekhar Reddy Talla SAP GTS Senior Analyst, Archer Daniels Midland (ADM), 1260 Pacific Ave, Erlanger, KY 41018, USA

DOI:

https://doi.org/10.18034/abcjar.v12i2.783

Keywords:

AI-Driven Optimization, Software Architecture, Complex Systems, Machine Learning, Reinforcement Learning, Evolutionary Algorithms, Multi-Objective Optimization

Abstract

This work uses AI-driven optimization to improve software design in complex systems by addressing scalability, flexibility, and performance while balancing conflicting goals. AI methods, including machine learning, reinforcement learning, and evolutionary algorithms, are studied to optimize architectural design and adaption in dynamic situations. The research synthesizes literature, case studies, and technical reports to assess AI-driven methodologies and find gaps in current practices using secondary data. AI approaches improve software system flexibility, scalability, and efficiency, especially multi-objective Optimization and hybrid methods. Data quality, computational costs, interpretability, and ethics still prevent mainstream usage. Policy implications emphasize the need for transparent, fair, and secure AI-driven optimization regulations. Addressing these difficulties and allowing responsible AI implementation requires promoting data governance, explainable AI standards, and business, academic, and government engagement. This paper emphasizes AI's transformational potential in software architecture evolution and calls for continuing research and policy creation to overcome present limits and lead future advances.

Downloads

Download data is not yet available.

References

Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96

Aleem, S., Capretz, L. F., Ahmed, F. (2016). Game Development Software Engineering Process Life Cycle: A Systematic Review. Journal of Software Engineering Research and Development, 4(1), 1-30. https://doi.org/10.1186/s40411-016-0032-7

Alkharabsheh, K., Crespo, Y., Manso, E., Taboada, J. A. (2019). Software Design Smell Detection: A Systematic Mapping Study. Software Quality Journal, 27(3), 1069-1148. https://doi.org/10.1007/s11219-018-9424-8

Alsamhi, S. H., Ou, M., Ansari, M. S. (2019). Survey on Artificial Intelligence Based Techniques for Emerging Robotic Communication. Telecommunication Systems, 72(3), 483-503. https://doi.org/10.1007/s11235-019-00561-z

Devarapu, K. (2020). Blockchain-Driven AI Solutions for Medical Imaging and Diagnosis in Healthcare. Technology & Management Review, 5, 80-91. https://upright.pub/index.php/tmr/article/view/165

Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160

Fadziso, T., Manikyala, A., Kommineni, H. P., & Venkata, S. S. M. G. N. (2023). Enhancing Energy Efficiency in Distributed Systems through Code Refactoring and Data Analytics. Asia Pacific Journal of Energy and Environment, 10(1), 19-28. https://doi.org/10.18034/apjee.v10i1.778

Farhan, K. A., Asadullah, A. B. M., Kommineni, H. P., Gade, P. K., & Venkata, S. S. M. G. N. (2023). Machine Learning-Driven Gamification: Boosting User Engagement in Business. Global Disclosure of Economics and Business, 12(1), 41-52. https://doi.org/10.18034/gdeb.v12i1.774

Fylaktopoulos, G., Goumas, G., Skolarikis, M., Sotiropoulos, A., Maglogiannis, I. (2016). An Overview of Platforms for Cloud Based Development. SpringerPlus, 5(1), 1-13. https://doi.org/10.1186/s40064-016-1688-5

Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776

Gade, P. K. (2023). AI-Driven Blockchain Solutions for Environmental Data Integrity and Monitoring. NEXG AI Review of America, 4(1), 1-16.

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770

Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., Thompson, C. R., & Venkata, S. S. M. G. N. (2022). Blockchain’s Influence on Asset Management and Investment Strategies. Global Disclosure of Economics and Business, 11(2), 115-128. https://doi.org/10.18034/gdeb.v11i2.772

Gerasimou, S., Calinescu, R., Tamburrelli, G. (2018). Synthesis of Probabilistic Models for Quality-of-service Software Engineering. Automated Software Engineering, 25(4), 785-831. https://doi.org/10.1007/s10515-018-0235-8

Goda, D. R. (2020). Decentralized Financial Portfolio Management System Using Blockchain Technology. Asian Accounting and Auditing Advancement, 11(1), 87–100. https://4ajournal.com/article/view/87

Gummadi, J. C. S. (2022). Blockchain-Enabled Healthcare Systems: AI Integration for Improved Patient Data Privacy. Malaysian Journal of Medical and Biological Research, 9(2), 101-110.

Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157

Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769

Kamisetty, A., Onteddu, A. R., Kundavaram, R. R., Gummadi, J. C. S., Kothapalli, S., Nizamuddin, M. (2021). Deep Learning for Fraud Detection in Bitcoin Transactions: An Artificial Intelligence-Based Strategy. NEXG AI Review of America, 2(1), 32-46.

Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95

Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123

Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162

Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97

Kothapalli, S. (2021). Blockchain Solutions for Data Privacy in HRM: Addressing Security Challenges. Journal of Fareast International University, 4(1), 17-25. https://jfiu.weebly.com/uploads/1/4/9/0/149099275/2021_3.pdf

Kothapalli, S. (2022). Data Analytics for Enhanced Business Intelligence in Energy-Saving Distributed Systems. Asia Pacific Journal of Energy and Environment, 9(2), 99-108. https://doi.org/10.18034/apjee.v9i2.781

Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663

Kumar, G., Kumar, K., Sachdeva, M. (2010). The Use of Artificial Intelligence Based Techniques for Intrusion Detection: A Review. The Artificial Intelligence Review, 34(4), 369-387. https://doi.org/10.1007/s10462-010-9179-5

Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672

Liao, D., Wu, Y., Wu, Z., Zhu, Z., Zhang, W. (2019). AI-based Software-defined Virtual Network Function Scheduling with Delay Optimization. Cluster Computing, suppl. 6, 22, 13897-13909. https://doi.org/10.1007/s10586-018-2124-0

Malek, S., Medvidovic, N., Mikic-Rakic, M. (2012). An Extensible Framework for Improving a Distributed Software System's Deployment Architecture. IEEE Transactions on Software Engineering, 38(1), 73-100. https://doi.org/10.1109/TSE.2011.3

Mallipeddi, S. R. (2022). Harnessing AI and IoT Technologies for Sustainable Business Operations in the Energy Sector. Asia Pacific Journal of Energy and Environment, 9(1), 37-48. https://doi.org/10.18034/apjee.v9i1.735

Manikyala, A. (2022). Sentiment Analysis in IoT Data Streams: An NLP-Based Strategy for Understanding Customer Responses. Silicon Valley Tech Review, 1(1), 35-47.

Manikyala, A., Kommineni, H. P., Allam, A. R., Nizamuddin, M., & Sridharlakshmi, N. R. B. (2023). Integrating Cybersecurity Best Practices in DevOps Pipelines for Securing Distributed Systems. ABC Journal of Advanced Research, 12(1), 57-70. https://doi.org/10.18034/abcjar.v12i1.773

Mohammed, M. A., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R. (2023). Economic Modeling with Brain-Computer Interface Controlled Data Systems. American Digits: Journal of Computing and Digital Technologies, 1(1), 76-89.

Naim, S. M., Damevski, K., Hossain, M. S. (2017). Reconstructing and Evolving Software Architectures Using A Coordinated Clustering Framework. Automated Software Engineering, 24(3), 543-572. https://doi.org/10.1007/s10515-017-0211-8

Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98

Onteddu, A. R., Rahman, K., Roberts, C., Kundavaram, R. R., Kothapalli, S. (2022). Blockchain-Enhanced Machine Learning for Predictive Analytics in Precision Medicine. Silicon Valley Tech Review, 1(1), 48-60. https://www.siliconvalley.onl/uploads/9/9/8/2/9982776/2022.4

Onteddu, A. R., Venkata, S. S. M. G. N., Ying, D., & Kundavaram, R. R. (2020). Integrating Blockchain Technology in FinTech Database Systems: A Security and Performance Analysis. Asian Accounting and Auditing Advancement, 11(1), 129–142. https://4ajournal.com/article/view/99

Parunak, H. V. D., Brueckner, S. A. (2015). Software Engineering for Self-organizing Systems. The Knowledge Engineering Review, suppl. Challenges in Agent-Oriented Software Engineering, 30(4), 419-434. https://doi.org/10.1017/S0269888915000089

Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163

Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.

Rodriguez, M., Rahman, K., Devarapu, K., Sridharlakshmi, N. R. B., Gade, P. K., & Allam, A. R. (2023). GenAI-Augmented Data Analytics in Screening and Monitoring of Cervical and Breast Cancer: A Novel Approach to Precision Oncology. Engineering International, 11(1), 73-84. https://doi.org/10.18034/ei.v11i1.718

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158

Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.

Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771

Talla, R. R. (2022). Integrating Blockchain and AI to Enhance Supply Chain Transparency in Energy Sectors. Asia Pacific Journal of Energy and Environment, 9(2), 109-118. https://doi.org/10.18034/apjee.v9i2.782

Talla, R. R., Addimulam, S., Karanam, R. K., Natakam, V. M., Narsina, D., Gummadi, J. C. S., Kamisetty, A. (2023). From Silicon Valley to the World: U.S. AI Innovations in Global Sustainability. Silicon Valley Tech Review, 2(1), 27-40.

Talla, R. R., Manikyala, A., Gade, P. K., Kommineni, H. P., & Deming, C. (2022). Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 10-23. https://upright.pub/index.php/ijrstp/article/view/164

Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.

Thompson, C. R., Sridharlakshmi, N. R. B., Mohammed, R., Boinapalli, N. R., Allam, A. R. (2022). Vehicle-to-Everything (V2X) Communication: Enabling Technologies and Applications in Automotive Electronics. Asian Journal of Applied Science and Engineering, 11(1), 85-98.

Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A. (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., & Ying, D. (2022). Implementing MLOps for Real-Time Data Analytics in Hospital Management: A Pathway to Improved Patient Care. Malaysian Journal of Medical and Biological Research, 9(2), 91-100. https://mjmbr.my/index.php/mjmbr/article/view/692

Venkata, S. S. M. G. N., Gade, P. K., Kommineni, H. P., Manikyala, A., & Boinapalli , N. R. (2022). Bridging UX and Robotics: Designing Intuitive Robotic Interfaces. Digitalization & Sustainability Review, 2(1), 43-56. https://upright.pub/index.php/dsr/article/view/159

Downloads

Published

2023-12-31

How to Cite

Richardson, N., Kothapalli, S., Onteddu, A. R., Kundavaram, R. R., & Talla, R. R. (2023). AI-Driven Optimization Techniques for Evolving Software Architecture in Complex Systems. ABC Journal of Advanced Research, 12(2), 71-84. https://doi.org/10.18034/abcjar.v12i2.783

Similar Articles

1-10 of 89

You may also start an advanced similarity search for this article.