A Review on Chemical Synthesis Process of Platinum Nanoparticles

Authors

  • Md. Aminul Islam University of Rajshahi
  • M. Anwarul Kabir Bhuiya University of Rajshahi
  • M. Saidul Islam University of Rajshahi

DOI:

https://doi.org/10.18034/apjee.v1i2.215

Keywords:

Platinum nanoparticles, Supporting materials, Chemical process of synthesis, Growth control

Abstract

Nanoparticles are key components in the advancement of future energy technologies; thus, strategies for preparing nanoparticles in large volume by techniques that are cost-effective are required. In the substitution of fossil-fuels by renewable energy resources, nanometersized particles play a key role for synthesizing energy vectors from varying and heterogeneous biomass feedstocks. They are extensively used in reformers for the production of hydrogen from solid, liquid, or gaseous energy carriers. Catalyst activities depend critically on their size-dependent properties. Nanoparticles are further indispensable as electrocatalysts in fuel cells and other electrochemical converters. The desire to increase the activity per unit area, and decrease the necessary amount of the expensive catalytic standard, It is clear that performance and commercialization of fuel cells depend on electrode materials performance. The application of pt  nanomaterials as an electrode in the field of fuel cell  has become a new, growing area of interest in recent years. We review chemical process for synthesis of pt nanoparticles. Recent developments in syntheses process of pure & mixed platinum nanoparticles has briefly reviewed specifically for applications in fuel cells. As the physicochemical properties of noble-metal nanostructures are strongly dependent upon shape and size, the development of reliable synthesis methods for the production of nanocrystals with well-defined size and morphology have been discussed briefly. The role of nanostructured supports for the nanoparticles, such as ordered mesoporous carbon, dendrimer have also discussed. And size of the nanoparticles obtained in deferent process and their temperature dependence has also discussed briefly.

Downloads

Download data is not yet available.

Author Biographies

  • Md. Aminul Islam, University of Rajshahi

    Department of Materials Science and Engineering, University of Rajshahi, Bangladesh

  • M. Anwarul Kabir Bhuiya, University of Rajshahi

    Department of Materials Science and Engineering, University of Rajshahi, Bangladesh

  • M. Saidul Islam, University of Rajshahi

    Department of Materials Science and Engineering, University of Rajshahi, Bangladesh

References

Arico A.S, Baglio V., Modica E, Di Blasi A, Antonucci V, (2004) Performance of DMFC anodes with ultra-low Pt loading, Electrochem Commun. Volume:6, p:164.

Belapurkar A. D., Kapoor S., Kulshreshtha S.K. and Mittal J. P., (2001) Radiolytic preparation and catalytic properties of platinum nanoparticles, Mater. Res. Bull., Volume:36, p.145.

Bock C. and MacDougall B., (2003) Proceedings of the Knowledge Foundation’s 4th International Conference on Nanostructured Materials, Miami, , ed. S. Pan, Knowledge Press, Brookline, MA.

Bratlie K. M, Lee H, Komvopoulos K, Yang P, Somorjai G.A, (2007) Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity, Nano Letters, Volume:7, page: 3097.

Castro E. G., Salvatierra R.V., Oliveira M. M., Schreiner W. H., Zarbin A. J. G. (2009), International conference on Advance Materials.

Chan K.Y., Ding J., Ren J., Cheng S. and Tsang K. Y.; (2004) Supported Mixed Metal Nanoparticles for Fuel Cell Electrode J. Mater. Chem, volume:14, p.:505.

Che G., Lakshmi B. B., Fisher E. R. and Martin C. R., (1998) Carbon nanotubule membranes for electrochemical energy storage and production, Nature, Volume: 393, p.: 346.

Chen C.W, Akashi M. (1997) Synthesis, characterization, and catalytic properties of colloidal platinum nanoparticles protected by poly (N-isopropylacrylamide). Langmuir Volume:13, p.:6465–6472.

Chen G. Y., Delafuente D. A., Sarangapan S. i and Mallouk T. E., (2001) Combinatorial discovery of bifunctional oxygen reduction — water oxidation electrocatalysts for regenerative fuel cells, Catal. Today,Volume: 67,p.: 341.

Chen J., Herricks T., Geissler M. and Xia Y., (2004) Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process, J. Am. Chem. Soc. Volume:126, p.: 10854.

Chen W., Zhang J., and Cai W., (2003) Sonochemical preparation of Au, Ag, Pd/SiO2 mesoporous nanocomposites, Scr. Mater., volume: 48, p.:1061.

Choi J. H., Park K. W., Lee H. K., Kim Y. M., Lee J. S. and Sung Y. E., (2003) Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell, Electrochim. Acta, Volume:48, p.:2781.

Dickson A. J., Carrette L. P. L., Collins J. A., Friedrich K. A. and Stimming U., (2002), Preparation of a PtRu/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. Acta, , Volume:47,p.: 3733.

Dubau L., Coutanceau C., Garnier E., Leger J. M. and Lamy C., (2003), Electrooxidation of methanol at platinum–ruthenium catalysts prepared from colloidal precursors: Atomic composition and temperature effects, J. Appl. Electrochem., Volume: 33, p.419–429.

Duff D. G., Edwards P. P., Johnson B. F. G., (1995) Formation of a Polymer-Protected Platinum Sol: A New Understanding of the Parameters Controlling Morphology, J. Phys. Chem. Volume: 99, p.15934.

Friedrich K. A., Geyzers K. P., Dickinson A. J. and Stimming U., (2002) Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts, J. Electroanal. Chem., Volume: 524–525, page 261.

Ghavale N., Dey S., Jain V. K and Tewari R. (2009) 2-Methoxycycloocta-1,5-dienyl platinum complexes as precursors for platinum nanoparticles, Bull. Mater. Sci., Volume: 32, No. 1, p. 15–18.

Gratiet B. L., Remita H., Picq G. and Delcourt M. O., (1996) CO-Stabilized Supported Pt Catalysts for Fuel Cells: Radiolytic Synthesis, J. Catal., Volume:164, page: 36.

Hirai H (1979) Formation and catalytic functionality of synthetic polymer noble metal colloid. J Macromol Sci-Chem, Volume: A13, p.:633–649.

Humphrey S.M, Grass M.E, Habas S.E, Niesz K, Somorjai G.A, Tilley T.D, (2007) Rhodium Nanoparticles from Cluster Seeds: Control of Size and Shape by Precursor Addition Rate, Nano Letters, Volume: 7, page :785.

Jiang J., and Kucernak A. ,( 2003) Electrooxidation of small organic molecules on mesoporous precious metal catalysts: II: CO and methanol on platinum–ruthenium alloy, J. Electroanal. Chem., Volume:543, p.187.

Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terassaki O. and Ryoo R.,(2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, Volume: 412,p.: 169.

Kim Y.-G, Oh S.-K. and Crooks R.M., (2004) Preparation and Characterization of 1−2 nm Dendrimer-Encapsulated Gold Nanoparticles Having Very Narrow Size Distributions, Chem. Mater. Volume: 16, p.:167.

Kluth P., Johannessen B., Cookson D.J., Foran G.J., Ridgway M.C., (2006) SAXS and EXAFS studies of ion beam synthesized Au nanocrystals, Nucl. Inst. Meth. in Phys. Res. B Volume:246,p. 30.

Knecht M.R, Wright D.W (2004) Dendrimer-Mediated Formation of Multicomponent Nanospheres, Chem Mater Volume:16, p.:4890.

Ledesma-Garci J, Escalante Garci I. L, Rodri F. J, Chapman T. W, Godinez L. A (2008) Immobilization of dendrimer-encapsulated platinum nanoparticles on pretreated carbon-fiber surfaces and their application for oxygen reduction. J Appl Electrochem Volume: 38, p.:515.

Li L.H. & Zhang W.D, (2008) Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing, Microchim Acta Volume:163,p.:305–311.

Li W., Liang C., Zhou W., Qiu J., Zhou Z., Sun G. and Xin Q., (2003)Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells, J. Phys. Chem. B, Volume: 107,p.: 6292.

Li W.S, Lu J, Du JH, Lu D.S, Chen H.Y, Li H, Wu Y.M. (2005) Electrocatalytic oxidation of methanol on polyaniline-stabilized Pt–HxMoO3 in sulfuric acid solution, Electrochem Commun Volume:7, p.:406.

Li, X. and Hsing I.-M., (2006) Surfactant-stabilized PtRu colloidal catalysts with good control of composition and size for methanol oxidation, Electrochim. Acta, volume: 52, p. 1358.

Liu Y. C., Qiu X. P., Huang Y. Q. and Zhu W. T., (2002) Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts, Carbon, Volume: 40, p.: 2375.

Liu Y. C., Qiu X. P., Huang Y. Q. and Zhu W. T., (2002), Mesocarbon microbeads supported Pt-Ru catalysts for electrochemical oxidation of methanol, J. Power Sources, Volume:111, p.160.

Liu Z., Lee J., Han M., Chen W. and Gan L., (2002) Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions , J. Mater. Chem.,Volume: 12,p.: 2453.

Long N. V., Chien N.D., Hayakawa T., Hirata H., Lakshminarayana G. and Nogami M. (2010) The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology, , Nanotechnology Volume:21, p.: 035605.

Maiyalagan T., (2009) Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation, J Solid State Electrochem, volume:13, Issue:10, p.:1561.

Mu X.-D., Evans D. G., and Kou Y., (2004), A General Method for Preparation of PVP-Stabilized Noble Metal Nanoparticles in Room Temperature Ionic Liquids Catalysis Letters Volume: 97, Nos. 3–4, September p.151-154.

Ohde, Hunt F. and Wai C. M., (2001), Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion, Chem. Mater., Volume:13,p. 4130.

Park K. W., Choi J. H., Kwon B. K., Lee S. A., and Sung Y. E., (2002) Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation, J. Phys. Chem. B, Volume:106, p.1869.

Park S.J, Jung H.J, Nah C.W (2003) Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution, Polymer (Korea) Volume:27, p.:46.

Rajesh B., Karthik V., Karthikeyan S., Thampi K. R., Bonard J. M. and Viswanathan B., (2002) Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells, Fuel, Volume: 81, p.2177.

Rioux R.M., Song H., Grass M., Habas S., Niesz K., Hoefelmeyer J.D., Yang P., and Somorjai G.A., (2006) Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects, Topics in Catalysis Volume: 39, Nos. 3–4, October, p. 167-174.

Schmidt T. J., Noeske M., Gasteiger H. A., Behm R. J., Britz P. and . Bo¨nnemann H, (1998), PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts: A Combined XPS, AFM, HRTEM, and RDE Study J. Electrochem. Soc., Volume:145, p.: 925.

Song H., Kim F., Connor S., Somorjai G.A. and Yang P., (2005) Pt Nanocrystals: Shape Control and Langmuir−Blodgett Monolayer Formation, J. Phys. Chem. B Volume:109, p.: 188.

Steigerwalt S., Deluga A., Cliffel E. and Lukehart C. M., (2001) A Pt−Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst, J. Phys. Chem. B, Volume: 105, p.:8097–8101.

Takasu Y., Fujiwara T., Murakami Y., Sasaki K., Oguri M., Asaki T. and Sugimoto W., (2000), Effect of Structure of Carbon‐Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol, J. Electrochem. Soc.,Volume:147, p.:4421.

Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) Size control of monodispersed Pt nanoparticles and their 2d organization by electrophoretic deposition. J Phys Chem B, Volume:103:3818–3827.

Umeda M., Kokubo M., Mohamedi M. and Uchida I.,( 2003) Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation, Electrochim. Acta, Volume:48, p.1367.

Vijayaraghavan G, Stevenson KJ (2007) Synergistic Assembly of Dendrimer-Templated Platinum Catalysts on Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction, Langmuir Volume:23, p.:5279.

Wang S.R., Tseng W. J., (2009) Aggregate structure and crystallite size of platinum nanoparticles synthesized by ethanol reduction, J. Nanopart. Res. Volume:11, page:947.

Warren S. C., Messina L. C., Slaughter L. S., Kamperman M., Zhou Q., Gruner S. M., . DiSalvo F. J, Wiesner U., (2008) Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly, Science Volume:320, p. 1748-1752.1

William D. K., James D. C., Oliver J. M., Deborah L. B., Edward A. K., Krzysztof C. K., Stuart R. S. and Lukehart C. M., (2003) Pt−Ru and Pt−Ru−P/Carbon Nanocomposites: Synthesis, Characterization, and Unexpected Performance as Direct Methanol Fuel Cell (DMFC) Anode Catalysts, J. Phys. Chem. B, Volume: 107,p. 5467.

William H., Valdecir A. and Gonzalez R., (2002) Methanol electro-oxidation on gas diffusion electrodes prepared with PtRu/C catalysts, Electrochim. Acta, Volume:47, p.: 3715.

Xiang X., Li W., Zhou Z., Fu Z., Lei J. and Lin Y., (2010) Dispersed platinum supported by hydrogen molybdenum bronze-modified carbon as electrocatalyst for methanol oxidation, J Solid State Electrochem, Volume:14, p.: 903.

Yang B., Lu Q., Wang Y., Zhuang L., Liu P., Wang J. and Wang R., (2003) Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts, Chem. Mater., , Volume:15, p.:3552.

Ye H, and Crooks R. M. (2007) , Effect of Elemental Composition of PtPd Bimetallic Nanoparticles Containing an Average of 180 Atoms on the Kinetics of the Electrochemical Oxygen Reduction Reaction , J. Am. Chem. Soc. Volume:129,p.:362.

Ye X. R., Lin Y. and Wai C. M., (2003) Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide, Chem. Commun.,p. 642.

Yu J. S., Kang S., Yoon S. B. and Chai G., (2002) Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter, J. Am. Chem. Soc., Volume:124, p.: 9382.

Yu J. S., Kang S., Yoon S. B. and Chai G., (2002) Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter, J. Am. Chem. Soc., ,Volume:124, p.: 9382.

Yu R., Chen L., Liu Q., Lin J., Tan K. L., S. Ng C., Chan H. S. O., Xu G.-Q. and Hor T. S. A., (1998) Platinum Deposition on Carbon Nanotubes via Chemical Modification, Chem. Mater., Volume: 10,p. 718.

Zhang X. and Chan K. Y., (2002), Microemulsion synthesis and electrocatalytic properties of platinum–cobalt nanoparticles, J. Mater. Chem., Volume:12,p.:1203.

Zhang X. and Chan K. Y., (2003) Water-in-Oil Microemulsion Synthesis of Platinum−Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties, Chem. Mater., Volume:15, p.:451.

Zhang Y, Grass M.E, Habas S.E, Tao F, Zhang T, Yang P, Somorjai G.A, (2007) One-step Polyol Synthesis and Langmuir−Blodgett Monolayer Formation of Size-tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures, J Phys Chem C, Volume:111, page:12243.

Zhou Z., Wang S., Zhou W., Wang G., Jiang L., Li W., Song S., Liu J., Sun G. and Xin Q., (2003) Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell, Chem. Commun.,, p.: 394;

Zoval J. V., Lee J., Gorer S., and Penner R. M, (1998) Electrochemical Preparation of Platinum Nanocrystallites with Size Selectivity on Basal Plane Oriented Graphite Surfaces, J. Phys. Chem. B, , volume:102, Issue:7, p.1166.

--0--

Downloads

Published

2014-12-31

How to Cite

Islam, M. A. ., Bhuiya, M. A. K. ., & Islam, M. S. . (2014). A Review on Chemical Synthesis Process of Platinum Nanoparticles . Asia Pacific Journal of Energy and Environment, 1(2), 103-116. https://doi.org/10.18034/apjee.v1i2.215

Similar Articles

21-30 of 41

You may also start an advanced similarity search for this article.