Identical by Descent (IBD): Investigation of the Genetic Ties between Africans, Denisovans, and Neandertals

Authors

  • Takudzwa Fadziso Chinhoyi University of Technology
  • Mani Manavalan LTI

DOI:

https://doi.org/10.18034/ajhal.v4i2.582

Keywords:

Human evolution, identity by descent, gene flow, Neandertal, Interbreeding, Denisova

Abstract

Interbreeding between human ancestors and other hominins has been extensively studied outside of Africa, but their shared history within Africa has received less study. However, comprehending subsequent events outside of Africa requires shining light on human evolution during this period, about which little is known. We investigate the genetic relationships of humans. By finding relatively short DNA sequences that these hominins share in the 1000 Genomes Phase 3 data, researchers were able to distinguish between African, Neandertals, and Denisovans descent by identical (IBD). It was confidently detected very short IBD segments by focusing on low frequency and uncommon variations. These segments reflect occurrences from the distant past because small IBD segments are likely older than larger ones. There have been two types of very old IBD segments found that are shared by humans, Neandertals, and/or Denisovans. Longer segments are more common in Asians and Europeans, with more segments in the South. Asians exceed East Asians in both Neandertal and Denisovan cultures. These longer portions indicate complex admixture occurring outside of the admixture events. Africa, the second category comprises shorter pieces that are largely shared among Africans and hence may depict African-related events.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

Author Biographies

  • Takudzwa Fadziso, Chinhoyi University of Technology

    Institute of Lifelong Learning and Development Studies, Chinhoyi University of Technology, ZIMBABWE

  • Mani Manavalan, LTI

    Technical Project Manager, Larsen & Toubro Infotech (LTI), Mumbai, INDIA

References

Genomes Project Consortium. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–1073. 1000 Genomes Project Consortium. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. DOI: https://doi.org/10.1038/nature11632

Genomes Project Consortium. 2015. A global reference for human genetic variation. Nature 526:68–74. DOI: https://doi.org/10.1038/nature15393

Botigué, L. R., Henn, B. M., Gravel, S., Maples, B. K., Gignoux, C. R., Corona, E., Atzmon, G., Burns, E., Ostrer, H., Flores, ., C., Bertranpetit, J., Comas, D. and Bustamante, C. D. 2013. Gene flow from north africa contributes to differential human genetic diversity in southern europe. Proceedings of the National Academy of Sciences, 110(29):11791–11796. DOI: https://doi.org/10.1073/pnas.1306223110

Browning S. R. and Browning, B. L. 2012. Identity by descent between distant relatives: Detection and applications. Annu Rev Genet, 46:617–633. DOI: https://doi.org/10.1146/annurev-genet-110711-155534

Browning SR. 2008. Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes. Genetics 178:2123–2132. DOI: https://doi.org/10.1534/genetics.107.084624

Bynagari, N. B. (2014). Integrated Reasoning Engine for Code Clone Detection. ABC Journal of Advanced Research, 3(2), 143-152. https://doi.org/10.18034/abcjar.v3i2.575 DOI: https://doi.org/10.18034/abcjar.v3i2.575

Bynagari, N. B. (2015). Machine Learning and Artificial Intelligence in Online Fake Transaction Alerting. Engineering International, 3(2), 115-126. https://doi.org/10.18034/ei.v3i2.566 DOI: https://doi.org/10.18034/ei.v3i2.566

Bynagari, N. B. (2016). Industrial Application of Internet of Things. Asia Pacific Journal of Energy and Environment, 3(2), 75-82. https://doi.org/10.18034/apjee.v3i2.576 DOI: https://doi.org/10.18034/apjee.v3i2.576

Carmi, S., Palamara, P. F., Vacic, V., Lencz, T., Darvasi, A. and Pe’er, I. 2013. The variance of identity-by-descent sharing in the wright–fisher model. Genetics, 193(3):911–928. DOI: https://doi.org/10.1534/genetics.112.147215

Chapman NH, Thompson EA. 2003. A model for the length of tracts of identity by descent in finite random mating populations. Theor Popul Biol. 64:141–150. DOI: https://doi.org/10.1016/S0040-5809(03)00071-6

Clevert DA, et al. 2011. cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate. Nucleic Acids Res. 39:e79. DOI: https://doi.org/10.1093/nar/gkr197

Currat M, Excoffier L. 2004. Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol. 2:e421. DOI: https://doi.org/10.1371/journal.pbio.0020421

Donepudi, P. K. (2014a). Technology Growth in Shipping Industry: An Overview. American Journal of Trade and Policy, 1(3), 137-142. https://doi.org/10.18034/ajtp.v1i3.503 DOI: https://doi.org/10.18034/ajtp.v1i3.503

Donepudi, P. K. (2014b). Voice Search Technology: An Overview. Engineering International, 2(2), 91-102. https://doi.org/10.18034/ei.v2i2.502 DOI: https://doi.org/10.18034/ei.v2i2.502

Donepudi, P. K. (2015). Crossing Point of Artificial Intelligence in Cybersecurity. American Journal of Trade and Policy, 2(3), 121-128. https://doi.org/10.18034/ajtp.v2i3.493 DOI: https://doi.org/10.18034/ajtp.v2i3.493

Donepudi, P. K. (2016). Influence of Cloud Computing in Business: Are They Robust?. Asian Journal of Applied Science and Engineering, 5(3), 193-196. Retrieved from https://journals.abc.us.org/index.php/ajase/article/view/1181

Eriksson A, Manica A. 2012. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc Natl Acad Sci U S A. 109:13956–13960. DOI: https://doi.org/10.1073/pnas.1200567109

Eriksson A, Manica A. 2014. The doubly conditioned frequency spectrum does not distinguish between ancient population structure and hybridization. Mol Biol Evol. 31:1618–1621. DOI: https://doi.org/10.1093/molbev/msu103

Gravel S, et al. 2013. Reconstructing Native American migrations from whole-genome and whole-exome data. PLoS Genet. 9:e1004023. DOI: https://doi.org/10.1371/journal.pgen.1004023

Green RE, et al. 2010. A draft sequence of the Neandertal genome. Science 328:710–722. DOI: https://doi.org/10.1126/science.1188021

Gusev, A., Palamara, P. F., Aponte, G., Zhuang, Z., Darvasi, A., Gregersen, P. and Pe’er, I. 2012. The architecture of long-range haplotypes shared within and across populations. Mol Biol Evol, 29(2):473–486. DOI: https://doi.org/10.1093/molbev/msr133

Halldorsson, B. V., Aguiar, D., Tarpine, R. and Istrail, S. 2011. The Clark phaseable sample size problem: long-range phasing and loss of heterozygosity in GWAS. J Comput Biol, 18(3):323–333. DOI: https://doi.org/10.1089/cmb.2010.0288

Hammer MF, Woerner AE, Mendez FL, Watkins JC, Wall JD. 2011. Genetic evidence for archaic admixture in Africa. Proc Natl Acad Sci U S A. 10:15123–15128. DOI: https://doi.org/10.1073/pnas.1109300108

Hedrick PW. 2007. Sex: differences in mutation, recombination, selection, gene flow, and genetic drift. Evolution 61:2750–2771. DOI: https://doi.org/10.1111/j.1558-5646.2007.00250.x

Hochreiter, S., Clevert, D.A. and Obermayer, K. 2006. A new summarization method for Affymetrix probe level data. Bioinformatics, 22(8):943–949. DOI: https://doi.org/10.1093/bioinformatics/btl033

Hochreiter. S. 2013. HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data. Nucleic Acids Research, 41(22):e202. DOI: https://doi.org/10.1093/nar/gkt1013

Khrameeva EE, et al. 2014. Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat Commun. 5:3584. DOI: https://doi.org/10.1038/ncomms4584

Kim BY, Lohmueller KE. 2015. Selection and reduced population sizecannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations. AmJ Hum Genet. 96:454–461. DOI: https://doi.org/10.1016/j.ajhg.2014.12.029

Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D.A., Mitterecker, A., Bodenhofer, U. and Hochreiter, S. 2012. cn.MOPS: mixture of poissons for discovering copy number variations in next generation sequencing data with a low false discovery rate. Nucleic Acids Res., 40(9):e69. DOI: https://doi.org/10.1093/nar/gks003

Klambauer, G., Unterthiner, T. and Hochreiter, S. 2013. Dexus: identifying differential expression in rna-seq studies with unknown conditions. Nucleic Acids Research, 41(21):e198. DOI: https://doi.org/10.1093/nar/gkt834

Kong A, et al. 2002. A high-resolution recombination map of the human genome. Nat Genet. 31:241–247. DOI: https://doi.org/10.1038/ng917

Krause J, et al. 2007. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol. 17:1908–1912. DOI: https://doi.org/10.1016/j.cub.2007.10.008

Krings M, et al. 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30. DOI: https://doi.org/10.1016/S0092-8674(00)80310-4

Lachance J, et al. 2012. Evolutionary history and adaptation from highcoverage whole-genome sequences of diverse African hunter-gatherers. Cell 150:457–469. DOI: https://doi.org/10.1016/j.cell.2012.07.009

Lambert CA, et al. 2010. Highly punctuated patterns of population structure on the X chromosome and implications for African evolutionary history. Am J Hum Genet. 86:34–44. DOI: https://doi.org/10.1016/j.ajhg.2009.12.002

Llorente MG, et al. 2015. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350:820–822. DOI: https://doi.org/10.1126/science.aad2879

Lohse K, Frantz LAF. 2014. Neandertal admixture in Eurasia confirmed by maximum likelihood analysis of three genomes. Genetics 196:1241–1251. DOI: https://doi.org/10.1534/genetics.114.162396

Lowery RK, et al. 2013. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms. Gene 530:83–94. DOI: https://doi.org/10.1016/j.gene.2013.06.005

Manavalan, M. (2014). Fast Model-based Protein Homology Discovery without Alignment. Asia Pacific Journal of Energy and Environment, 1(2), 169-184. https://doi.org/10.18034/apjee.v1i2.580 DOI: https://doi.org/10.18034/apjee.v1i2.580

Manavalan, M. (2016). Biclustering of Omics Data using Rectified Factor Networks. International Journal of Reciprocal Symmetry and Physical Sciences, 3, 1–10. Retrieved from https://upright.pub/index.php/ijrsps/article/view/40

Manavalan, M., & Bynagari, N. B. (2015). A Single Long Short-Term Memory Network can Predict Rainfall-Runoff at Multiple Timescales. International Journal of Reciprocal Symmetry and Physical Sciences, 2, 1–7. Retrieved from https://upright.pub/index.php/ijrsps/article/view/39

Manavalan, M., & Donepudi, P. K. (2016). A Sample-based Criterion for Unsupervised Learning of Complex Models beyond Maximum Likelihood and Density Estimation. ABC Journal of Advanced Research, 5(2), 123-130. https://doi.org/10.18034/abcjar.v5i2.581 DOI: https://doi.org/10.18034/abcjar.v5i2.581

Manavalan, M., & Ganapathy, A. (2014). Reinforcement Learning in Robotics. Engineering International, 2(2), 113-124. https://doi.org/10.18034/ei.v2i2.572 DOI: https://doi.org/10.18034/ei.v2i2.572

Mendez FL, Watkins JC, Hammer MF. 2012. Global genetic variation at OAS1 provides evidence of archaic admixture in Melanesian populations. Mol Biol Evol. 29:1513–1520. DOI: https://doi.org/10.1093/molbev/msr301

Mendez FL, Watkins JC, Hammer MF. 2013. Neandertal origin of genetic variation at the cluster ofOAS immunity genes. Mol Biol Evol. 30:798–801. DOI: https://doi.org/10.1093/molbev/mst004

Meyer LR, et al. 2013. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41:D64–D69. DOI: https://doi.org/10.1093/nar/gks1048

Meyer M, et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226. DOI: https://doi.org/10.1126/science.1224344

Munro SA, et al. 2014. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat Commun. 5:5125. DOI: https://doi.org/10.1038/ncomms6125

Nielsen R, et al. 2005. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3:e170. DOI: https://doi.org/10.1371/journal.pbio.0030170

Palamara PF, Lencz T, Darvasi A, Pe’er I. 2012. Length distributions of identity by descent reveal fine-scale demographic history. Am J Hum Genet. 91:809–822. DOI: https://doi.org/10.1016/j.ajhg.2012.08.030

Plagnol V, Wall JD. 2006. Possible ancestral structure in human populations. PLoS Genet. 2:e105. DOI: https://doi.org/10.1371/journal.pgen.0020105

Povysil G, Hochreiter S. 2014. Sharing of very short IBD segments between humans, Neandertals, and Denisovans. bioRxiv. DOI: https://doi.org/10.1101/003988

Pru¨ fer K, et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49. DOI: https://doi.org/10.1038/nature12886

Ralph P, Coop G. 2013. The geography of recent genetic ancestry across Europe. PLoS Biol. 11:e1001555. DOI: https://doi.org/10.1371/journal.pbio.1001555

Reich D, et al. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053–1060. DOI: https://doi.org/10.1038/nature09710

Reich D, et al. 2011. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am J Hum Genet. 89:516– 528. DOI: https://doi.org/10.1016/j.ajhg.2011.09.005

Sanchez-Quinto F, et al. 2012. North African populations carry the signature of admixture with Neandertals. PLoS One 7:e47765. DOI: https://doi.org/10.1371/journal.pone.0047765

Sankararaman S, et al. 2014. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507:354–357. DOI: https://doi.org/10.1038/nature12961

Sankararaman S, Mallick S, Patterson N, Reich D. 2016. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr Biol. 26:1241–1247. DOI: https://doi.org/10.1016/j.cub.2016.03.037

Sankararaman S, Patterson N, Li H, Pa¨a¨bo S, Reich D. 2012. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8:e1002947. DOI: https://doi.org/10.1371/journal.pgen.1002947

Schaffner, S. F. 2004. The x chromosome in population genetics. Nat Rev Genet, 5(1):43–51, 2004. DOI: https://doi.org/10.1038/nrg1247

Serre D, et al. 2004. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol. 2:e57. DOI: https://doi.org/10.1371/journal.pbio.0020057

Skoglund P, JakobssonM. 2011. Archaic human ancestry in East Asia. Proc Natl Acad Sci U S A. 108:18301–18306. DOI: https://doi.org/10.1073/pnas.1108181108

Slatkin M. 2008. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 9:477–485. DOI: https://doi.org/10.1038/nrg2361

Strachan T, Read AP. 2004. Human molecular genetics. 3rd ed. London and New York: Garland Science/Taylor & Francis Group.

Su Z, et al. 2014. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotech. 32:903–914. DOI: https://doi.org/10.1038/nbt.2957

Thomas A, Camp NJ, Farnham JM, Allen-Brady K, Cannon-Albright LA. 2008. Shared genomic segment analysis. mapping disease predisposition genes in extended pedigrees using SNP genotype assays. Ann Hum Genet. 72:279–287. DOI: https://doi.org/10.1111/j.1469-1809.2007.00406.x

Thomas A, Skolnick MH, Lewis CM. 1994. Genomic mismatch scanning in pedigrees. Math Med Biol. 11:1–16. DOI: https://doi.org/10.1093/imammb/11.1.1

Ulgen A, LiW. 2005. Comparing single-nucleotide-polymorphism marker based and microsatellite marker-based linkage analyses. BMC Genet. 6:S13. DOI: https://doi.org/10.1186/1471-2156-6-S1-S13

Unpublished data [cited 2015 Apr 4]. Available from: http://biorxiv. org/content/early/2014/07/15/003988.

Veeramah KR, Gutenkunst RN, Woerner AE, Watkins JC, Hammer MF. 2014. Evidence for increased levels of positive and negative selection on the X chromosome versus autosomes in humans. Mol Biol Evol. 31:2267–2282. DOI: https://doi.org/10.1093/molbev/msu166

Vernot B, Akey JM. 2014. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343:1017–1021. DOI: https://doi.org/10.1126/science.1245938

Wall JD, et al. 2013. Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics 194:199–209. DOI: https://doi.org/10.1534/genetics.112.148213

Wang S, Lachance J, Tishkoff SA, Hey J, Xing J. 2013. Apparent variation in Neanderthal admixture among African populations is consistent with gene flow from Non-African populations. Genome Biol Evol. 5:2075–2081. DOI: https://doi.org/10.1093/gbe/evt160

Yang MA, Malaspinas AS, Durand EY, Slatkin M. 2012. Ancient structure in Africa unlikely to explain Neanderthal and Non-African genetic similarity. Mol Biol Evol. 29:2987–2995. DOI: https://doi.org/10.1093/molbev/mss117

Yu A, et al. 2001. Comparison of human genetic and sequence-based physical maps. Nature 409:951–953. DOI: https://doi.org/10.1038/35057185

--0--

Downloads

Published

2017-12-31

Issue

Section

Peer-reviewed Article

How to Cite

Fadziso, T., & Manavalan, M. (2017). Identical by Descent (IBD): Investigation of the Genetic Ties between Africans, Denisovans, and Neandertals. Asian Journal of Humanity, Art and Literature, 4(2), 157-170. https://doi.org/10.18034/ajhal.v4i2.582