Artificial Intelligence Driven Crypto Currencies
DOI:
https://doi.org/10.18034/gdeb.v9i2.557Keywords:
Cryptocurrency, Cryptography, Artificial Intelligence, Data Encryption, Deep Learning, Blockchain, BitcoinAbstract
Artificial intelligence-driven cryptocurrencies are cryptocurrencies created by Artificial intelligence using the traditional human cryptocurrency development framework without human intervention. An AI explores the data from each different stream and arriving at the framework which can host these cryptocurrencies following the standards of legality. Cryptography is the encryption of specific data to conceal it and keep it a secret from unwanted third parties. Cryptocurrencies are encrypted currencies with unique keys as developed by developers. Artificial intelligence is an advanced machine programmed to simulate and emulate human intelligence by carrying tasks and reaching conclusions with little or no human intervention. This work considered the use of AI through machine learning and deep learning in the development of cryptocurrencies. The AI machine will set all the parameters and structure of the cryptocurrency. This will include how data is added, removed, and verified on the stream. Blockchain is an open ledger of a cryptocurrency's transactions. It stores files in the system, arranged in blocks, and connected on a list called chains. The article considers how AI-driven cryptocurrency will run using the blockchain network and its impact on it. Artificial intelligence and cryptocurrency are technological very essential technological development currently. The effect of the combination of both technologies would be enormous in the future as both technologies will develop each other remarkably.
Downloads
References
Donepudi, P. K. (2018). AI and Machine Learning in Retail Pharmacy: Systematic Review of Related Literature. ABC Journal of Advanced Research, 7(2), 109-112. https://doi.org/10.18034/abcjar.v7i2.514 DOI: https://doi.org/10.18034/abcjar.v7i2.514
Donepudi, P. K. (2019). Automation and Machine Learning in Transforming the Financial Industry. Asian Business Review, 9(3), 129-138. https://doi.org/10.18034/abr.v9i3.494 DOI: https://doi.org/10.18034/abr.v9i3.494
Donepudi, P. K. (2020). Crowdsourced Software Testing: A Timely Opportunity. Engineering International, 8(1), 25-30. https://doi.org/10.18034/ei.v8i1.491 DOI: https://doi.org/10.18034/ei.v8i1.491
Donepudi, P. K., Ahmed, A. A. A., Saha, S. (2020). Emerging Market Economy (EME) and Artificial Intelligence (AI): Consequences for the Future of Jobs. Palarch’s Journal of Archaeology of Egypt/Egyptology, 17(6), 5562-5574. https://archives.palarch.nl/index.php/jae/article/view/1829
Ganapathy, A. (2017). Friendly URLs in the CMS and Power of Global Ranking with Crawlers with Added Security. Engineering International, 5(2), 87-96. https://doi.org/10.18034/ei.v5i2.541
Ganapathy, A. (2018). Cascading Cache Layer in Content Management System. Asian Business Review, 8(3), 177-182. https://doi.org/10.18034/abr.v8i3.542
Ganapathy, A. (2019). Image Association to URLs across CMS Websites with Unique Watermark Signatures to Identify Who Owns the Camera. American Journal of Trade and Policy, 6(3), 101-106. https://doi.org/10.18034/ajtp.v6i3.543
Neogy, T. K., & Paruchuri, H. (2014). Machine Learning as a New Search Engine Interface: An Overview. Engineering International, 2(2), 103-112. https://doi.org/10.18034/ei.v2i2.539
Paruchuri, H. (2015). Application of Artificial Neural Network to ANPR: An Overview. ABC Journal of Advanced Research, 4(2), 143-152. https://doi.org/10.18034/abcjar.v4i2.549
Paruchuri, H. (2017). Credit Card Fraud Detection using Machine Learning: A Systematic Literature Review. ABC Journal of Advanced Research, 6(2), 113-120. https://doi.org/10.18034/abcjar.v6i2.547
Paruchuri, H. (2018). AI Health Check Monitoring and Managing Content Up and Data in CMS World. Malaysian Journal of Medical and Biological Research, 5(2), 141-146. https://doi.org/10.18034/mjmbr.v5i2.554 DOI: https://doi.org/10.18034/mjmbr.v5i2.554
Vadlamudi, S. (2015). Enabling Trustworthiness in Artificial Intelligence - A Detailed Discussion. Engineering International, 3(2), 105-114. https://doi.org/10.18034/ei.v3i2.519
Vadlamudi, S. (2016). What Impact does Internet of Things have on Project Management in Project based Firms?. Asian Business Review, 6(3), 179-186. https://doi.org/10.18034/abr.v6i3.520
Vadlamudi, S. (2017). Stock Market Prediction using Machine Learning: A Systematic Literature Review. American Journal of Trade and Policy, 4(3), 123-128. https://doi.org/10.18034/ajtp.v4i3.521
Vadlamudi, S. (2018). Agri-Food System and Artificial Intelligence: Reconsidering Imperishability. Asian Journal of Applied Science and Engineering, 7(1), 33-42. Retrieved from https://journals.abc.us.org/index.php/ajase/article/view/1192
--0--