Analysis of Multimodal Data Using Deep Learning and Machine Learning

Authors

  • Sai Srujan Gutlapalli Interior Architect/ Designer, RI Group, NY, USA

DOI:

https://doi.org/10.18034/ajhal.v4i2.658

Keywords:

Multimodal Analytics, Machine Learning, Deep Learning

Abstract

A modality is an event or experience. Life is multimodal, see, hear, smell, feel, and taste. Multimodal experiences involve some world modalities. Artificial intelligence must grasp multimodal views to understand our surroundings. Multimodal machine learning models interact and correlate input from several modalities. It's a multi-disciplinary field with great potential. In this study, we analyze emerging multimodal machine learning technologies and categorize them scientifically rather than focusing on specific multimodal applications. Multimodal machine learning offers more potential and problems than classifications. Most multimodal learning research collects quantitative data from polls and surveys. This research reviews a detailed library of observational studies on multimodal data (MMD) skills for human learning using artificial intelligence-powered approaches including Machine Learning and Deep Learning. This research also describes how MMD has improved learning and in what environments. This paper discusses multimodal learning and its ongoing improvements and approaches to improving learning. Finally, future researchers should carefully consider building a system that aligns multimodal aspects with the study and learning plan. These elements could enhance multimodal learning by facilitating theory and practice activities. This research lays the groundwork for multimodal data use in future learning technologies and development.

Downloads

Download data is not yet available.

References

Carmi, S., Palamara, P. F., Vacic, V., Lencz, T., Darvasi, A. and Pe’er, I. (2013). The variance of identity-by-descent sharing in the wright–fisher model. Genetics, 193(3):911–928.

Eradze, M. & Laanpere, M. (2017). Lesson Observation Data in Learning Analytics Datasets: Observata. In Proceedings of the 12th European Conference on Technology-Enhanced Learning (EC-TEL 2017), Tallinn, Estonia, pp. 504–508.

Gutlapalli, S. S. (2016). An Examination of Nanotechnology’s Role as an Integral Part of Electronics. ABC Research Alert, 4(3), 21–27. https://doi.org/10.18034/ra.v4i3.651

Mandapuram, M. (2016). Applications of Blockchain and Distributed Ledger Technology (DLT) in Commercial Settings. Asian Accounting and Auditing Advancement, 7(1), 50–57. Retrieved from https://4ajournal.com/article/view/76

Sankararaman S, Mallick S, Patterson N, Reich D. 2016. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr Biol. 26:1241–1247.

Downloads

Published

2017-12-31

Issue

Section

Peer-reviewed Article

How to Cite

Gutlapalli, S. S. (2017). Analysis of Multimodal Data Using Deep Learning and Machine Learning. Asian Journal of Humanity, Art and Literature, 4(2), 171-176. https://doi.org/10.18034/ajhal.v4i2.658

Similar Articles

11-20 of 20

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)