Influence of Localized Surface Plasmon Polaritons on Silver Nanoparticles

Authors

  • Cliff Orori Mosiori Technical University of Mombasa
  • Walter Kamande Njoroge Kenyatta University
  • Lawrence Otieno Ochoo Kenyatta University

DOI:

https://doi.org/10.18034/abcjar.v9i1.503

Keywords:

Polaritons Bio-sensing, Absorption, Extinction, Cross-section, Plasmons, Scattering

Abstract

In this article, we present a theoretical study on localized surface Plasmon of spherical Ag nanoparticles (NPs) done by numerical simulation. A plane EM wave was used to determine absorption cross-section and results showed that excitation of LSPPs produced an electric field on the surface of the nanoparticle. This field causes a large cross sectional area that influences higher scattering of incident photon at the surface of an absorber layer. It was concluded that LSPPs excitations in small size spherical particles can be utilized in low-cost solar cells to increase PCE of solar panels and can be expanded to many other fields of optoelectronic technologies ranging from solar cells, through photo diodes to optical bio-sensing applications. 

 

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

Author Biographies

  • Cliff Orori Mosiori, Technical University of Mombasa

    Department of Mathematics and Physics, Technical University of Mombasa, Mombasa - 80100, KENYA

  • Walter Kamande Njoroge, Kenyatta University

    Department of Physics, Kenyatta University, P. O. Box 43844 - 00100, Nairobi, KENYA

  • Lawrence Otieno Ochoo, Kenyatta University

    Department of Physics, Kenyatta University, P. O. Box 43844 - 00100, Nairobi, KENYA

References

Barnes, L., William, J., Alain, P. K., Dereux, S., Thomas W., and Ebbesen, W. (2003). "Surface Plasmon subwavelength optics." Nature, 424: 6950: 824.

Billaud, P. (2007). "Optical extinction spectroscopy of single silver nanoparticles." The European Physical Journal D, 43.1-3: 271-274.

Cao, J., Sun, T. and Grattan, K. T. V. (2014). Gold nanorod-based localized surface Plasmon resonance biosensors: A review. Sensors and Actuators, B: Chemical, 195: 332-351. doi:10.1016/j.snb.2014.01.056. DOI: https://doi.org/10.1016/j.snb.2014.01.056

Catchpole, K., Albert, S. and Polman. R. (2008). "Plasmonic solar cells." Optics express 16.26: 21793-21800.

González, J., Rondano, F. and Barba-Ortega, J. (2015). "Influence of both quantum well thickness and radius on density exciton states on a semiconductor nanoribbon", Journal of Physics: Conference Series, IOP Publishing, pp. 012081.

Hu, M. J., Chen, Z.-Y., Li, L., Au, G.V., Hartland, X., Li, M., Marquez, Y. Xia, (2006), Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chemical Society Reviews, 35: 1084–1094. DOI: https://doi.org/10.1039/b517615h

Kumar, S. N., Wittenberg, J., and Oh, S. H. (2012). “Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly,” Analytical chemistry, Vol. 85, no. 2, pp. 971–977.

Mansoor, R., Riyadh, Q., Amin Habbeb, R, and AL-Khursan, P. (2018). "Numerical modeling of surface plasmonic polaritons." Results in Physics, 9: 1297-1300.

Nasser, Z.H. (2017)."Synthesis and Characterization Thin Films of TiO2 Nanorods to Fabrication Hybrid Solar Cell ", Physics department, Basrah University, pp. 190.

Pattnaik, S. P., and Priyabrata., T. K. (2005), "Surface Plasmon resonance." Applied Biochemistry and Biotechnology, 126.2: 79-92. DOI: https://doi.org/10.1385/ABAB:126:2:079

Petryayeva, E. and Krull, J. (2011). Localized surface Plasmon resonance: nanostructures, bioassays and biosensing – a review, Analytica Chimica Acta, 706: 8–24. DOI: https://doi.org/10.1016/j.aca.2011.08.020

Ritchie, R. H. (1957). “Plasma Losses by Fast Electrons in Thin Films,” Physical Review, Vol. 106, pp. 874–881.

Tokman, D. E., Westerhof, M. and Gavrilova, M. A. (2000). "Wave power flux and ray-tracing in regions of resonant absorption." Plasma physics and controlled fusion, 42: 91.

Ungureanu, C., Rayavarapu, R. G., Manohar, S., & Leeuwen, van, T. G. (2009). Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment. Journal of Applied Physics, 105: (10), 102032-1/7. [102032]. DOI: 10.1063/1.3116139. DOI: https://doi.org/10.1063/1.3116139

Willets, K. A. and Van Duyne R. P. (2007). Localized surface Plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry, Annual Reviews, Palo Alto, 58: 267–297. DOI: https://doi.org/10.1146/annurev.physchem.58.032806.104607

Wood, R. W. (1902). “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Spectrum,” Proceedings of the Physical Society of London, Vol. 18, p. 269.

Zayats, K., Anatoly V., Igor, I. and Smolyaninov. V. (2003). "Near-field photonics: surface Plasmon polaritons and localized surface plasmons." Journal of Optics A: Pure and Applied Optics 5.4: S16.

--0--

Downloads

Published

2020-05-31

How to Cite

Mosiori, C. O. ., Njoroge, W. K. ., & Ochoo, L. O. . (2020). Influence of Localized Surface Plasmon Polaritons on Silver Nanoparticles. ABC Journal of Advanced Research, 9(1), 39-44. https://doi.org/10.18034/abcjar.v9i1.503

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>